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Abstract— In Internet of Things (IoT) environment there are 

a huge number of devices that need to communicate and send 

data continuously between these devices also between them and 

the cloud data center. This data is increasing exponentially, 

exposing the IoT environment to collapse. Therefore, so we need 

an environment that supports the stability of the IoT and at the 

same time increases the speed of exchange huge data between IoT 

devices. Fog computing and mist computing support real time 

data collection and analysis locally at IoT devices. In addition, 

fog computing and mist computing overcome on various 

challenges like network bandwidth, and reliability. Resource 

management and allocation for IoT tasks in three levels mist-fog-

cloud architecture suffer from a lack of approaches and 

frameworks that handle this situation in an efficient manner. In 

order to address this shortage, Multi-Level IoT Tasks Scheduling 

(MLITS) model is introduced in this paper. MLITS is an 

orchestration system for managing and allocating IoT tasks over 

the mist-fog-cloud architecture. The proposed model performs 

IoT tasks based on their deadline and the urgency of their 

execution. In addition, it performs various types of IoT tasks 

without rapidly consuming available sources. Moreover, the 

proposed model maintains the resource usage balanced. Finally, 

The MLITS is simulated and evaluated on truthful fog resources 

and various workload circumstances. Also, the proposed 

scheduling model is compared with three scheduling model, 

namely; Min-Min, Credit-Based-Scheduling (CBS) and Earliest-

Feasible-Deadline-First (EFDF). Through extensive simulations, 

we show that our proposed model enhances the performance 

metrics, namely; turnaround time, waiting time and throughput. 

Keywords— Cloud Computing, Fog Computing, Mist 

Computing, IoT, Load balancing, Reliability. 

I. INTRODUCTION 

The idea of the IoT emerged from the fact that most devices 
and humans are connected most of the time to the Internet [1]. 
The IoT is a modern technique that is designed to allow all 
types of devices including tools, sensors, various Artificial 
Intelligent (AI) tools and more to communicate data between 
them in a secure manner [2]. To implement the concept of 
Internet of Things we need a communication infrastructure, 
and computational units [3]. Cloud computing introduces 
storage resources, communication and computing provisioning 
for IoT [4]. Furthermore, it hides all complexity of IoT services 
and applications. The integration of cloud and IoT is called 
CloudIoT paradigm. This integration helps to provide new 

types of applications and services based on IoT. There are 
various works that introduces this integration [5, 6, 7, 8]. 

Although this integration has been successful in many 
cases, it suffers from some shortcomings of presence of 
thousands of billion IoT devices that generate huge data and 
needs real-time analysis [9, 10, 11]. The implementation of 
large IoT devices and services is increasing the service latency 
by using cloud computing in unacceptable manner. Moreover, 
the energy consumption to transfer data is high. Therefore, it 
affects the consumption of batteries of IoT devices 
significantly, which we need to maintain its capacity for a long 
time. More broadly, the use of cloud computing alone suffers 
from the fact that the (IOT) is vulnerable to hacking and loss of 
security. Fog computing architecture gives a reliable solution 
to solve most of the problems associated with using Cloud 
computing architecture [9, 12, 13]. 

Fog computing is an extension for the cloud computing, it 
introduces a real-time and low latency services to billions of 
IoT devices at the edge of the network [14, 15]. It considered 
as virtual platform between IoT and cloud computing 
architecture. It can handle large-scale distributed devices and 
systems and support the heterogeneity of these devices and 
systems. Fog computing environment contains two types of 
nodes. The first type is the extreme edge node which is also 
called mist node. The mist computing facilitates the 
deployment of IoT services with its combination with IoT 
devices [16, 17]. It brings the computation closer to sensors 
and actuators in IoT environment. The second type is middle 
fog nodes which represent additional resources in the fog 
system and far from the IoT devices. Also, the mist computing 
is integrated with the fog computing and cloud computing 
concepts to enhance the data collection and processing in IoT 
environment. Therefore, the mist-fog-cloud colony will reduce 
the network delay and consequently the energy consuming for 
all nodes in mist, and fog, layers [18, 19], as shown in Figure 
1.  

IoT tasks can be classified into four types, real-time tasks 
that have less computation density, real-time tasks that have 
high computation density, Non-real time tasks that have 
specific requirement of Quality-of-Service (QoS), and Non-real 
time tasks that required massive amount of resources and huge-
volume storage [20]. 
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In this paper a new framework based on mist-fog-cloud 
architecture is proposed to manage and execute IoT tasks in an 
efficiency manner. Multi-Level-IoT-Task-Scheduling 
(MLITS) model is proposed to overcome these challenges of 
management. It allocates the various types of IoT tasks 
according to their urgency. Also, the proposed model maintains 
a balanced load among the different types of system cluster 
nodes. Besides, this model Maintains energy consumption rates 

for IoT devices, mist and fog nodes. 

II. RELATED WORK 

In this paper, analysis of various research in the field of 
Mist computing, fog computing, cloud computing and IoT 
integration are introduced. Fog computing frameworks are able 
to facilitate all IoT needs [21]. Resource management, IoT 
devices communication, all of them can be management by fog 
computing frameworks. In [21], Sarkar introduces a theoretical 
model of fog computing framework that can be integrated with 
IoT. He measures the service latency and energy consumption 
compared to cloud computing approach. Also, Rahman et.al in 
[19] introduces Internet-of-Healthcare-Things (IoHT) 
framework. Unfortunately, this framework is based on static 
load balancing. There are various fog computing frameworks 
that can be integrated with IoT to provide many tools to 
manage IoT services [22, 23]. 

A Distributed Dataflow programming model is proposed in 
[22] to manage IoT application in Fog computing environment. 
In this framework the most requirements to build IoT 
application are determined and processed. However, no 
measure of performance has been provided to measure the 
effectiveness of this framework. In [23] a new fog computing 
framework to resource allocation for IoT is proposed. In this 
framework the latency is reduced, and the fault tolerance and 
privacy are considered. 

Fig. 1. IoT with Mist-Fog-Cloud colony  

Mist computing enhances the communication and 
computing availability for all nodes and IoT devices. Cloud, 

fog, and mist computing work together to introduce the Mist-
Fog-Cloud architecture [19, 24] that enhances the IoT 
environment. The proposed work in this paper deals with this 
new architecture to capture its advantage that fit IoT 
environment. 

There are various frameworks that which are similar to our 
work. Min-Min Algorithm, Credit-Based-Scheduling (CBS) 
Algorithm, Improved Priority based Job Scheduling Algorithm, 
and Earliest-Feasible-Deadline-First (EFDF) are four research 
that try to allocate IoT tasks in an efficiency way in cloud 
computing environment. These researches are used to evaluate 
the proposed MLITS model. 

In [25] the Min-Min Algorithm for task scheduling is 
introduced. It is based on minimum completion time (MCT) 
for tasks to allocate them to resources. In this algorithm, the 
task that has less time to use the resources is allocated firstly. 

In [26] the Credit-Based-Scheduling (CBS) Algorithm is 
proposed. CBS algorithm concentrates on tasks criteria, 
priority and length, to management their scheduling. The task 
deadline did not implement in this work and left for the future. 
In [27] an improvement in priority-based job scheduling 
algorithm is introduced. The task priority is considered the 
major factor in this research to enhance the makespan for tasks 
scheduling. The EFDF algorithm is introduced in [28]. The 
tasks deadline is main attribute to schedule them in this 
algorithm. It arranges all tasks in a queue based on their closest 
to its deadline, then pick up one of them to be allocated. 
Finally, all of these algorithms Suffer from the limited factors 
that deal with to schedule tasks. In another word, these 
algorithms are focus on a specific scheduling criterion such as 
priority and neglecting the other criteria such as; task size, and 
deadline. 

III. PROPOSED MODEL 

The proposed model contains three tiers: IoT, fog and 
cloud. The first tier is IoT which sometimes is also referred to 
as “IoT &dew”. This tier is responsible for interact with the 
world. IoT includes the sensors for collecting the data from the 
environment, and the actors which have an effect on it. Dew is 
a solution for real time IoT applications, which required 
computation resources with a negligible delay. Unfortunately, 
Dew supports limited computing power and storage resources. 
The second layer is the fog tier, which is divided into two sub-
layers; mist and middle fog level. The mist layer provides 
dedicated nodes, which can be accessible with low 
communication overhead.  In another word, the mist nodes are 
closed to IoT devices. On the other hand, the middle fog layer 
contains fog nodes and orchestration node. The orchestration 
node is responsible for managing the load among the mist 
nodes and middle fog nodes. The last layer is cloud computing, 
which provides boundless amount of computing nodes, and 
huge-volume storage. 

Obviously, any IoT application can be consisted of one or 

more services. These services create one or more tasks, which 

will be executed on one or more of resource units (VMs) in 

cloud, fog, or mist. The discernment in between mist, fog, or 

cloud in resource allocation is depending on the urgency of the 

generated tasks by the service. Hence, there are four levels of 
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task urgency. The first level is the highest time urgency, which 

required less computation density. This type of tasks can be 

calculated by the dew computing nodes, which are called dew-

based-tasks. The second level of task urgency is also has a 

highest time urgency but it required high computation density. 

This type of tasks will be assigned to one of mist nodes, which 

is called mist-based-tasks. The third level of task urgency has 

specific QoS threshold. This type of tasks will be assigned to 

fog nodes in the middle fog level. Also, this type of tasks is 

called fog-based-tasks. The last type of tasks, which isn't real-

time tasks and required massive amount of resources and 

huge-volume storage, will be assigned to the cloud nodes. 

This type is called cloud-based-tasks.  

MLITS supports various levels of management 

mechanisms to deal with the IoT service requirements. Figure 

2 depicts the global architecture of the proposed model and 

functionality of its components. Frist of all, the first type of 

task urgency is handled by the dew computing node. 

Consequently, the mist node will receive the remaining types 

of task urgency (second, third and fourth urgency level). The 

mist nodes receive these types of tasks by the Service 

Container Listener (SCL). SCL asks the Mist broker to 

allocate the required resources for the received tasks. In 

another word, the SCL directs the tasks to the mist broker. 

The mist broker assigns the second type of task urgency 

(mist based tasks) to its local VMs and forwards the other 

tasks to the Fog Orchestrator node. The Orchestrator node 

contains three queues for buffering the received tasks from 

mist nodes. The Fog Service Broker (FSB) module in the Fog 

Orchestrator node receives the third and the fourth types of 

task urgency. Moreover, the Orchestrator node receives the 

mist base tasks in the case of the mist node doesn’t has 

sufficient resources. Hence, it takes the decision of to process 

the mist based tasks in one of the middle fog node. Also, 

Orchestrator node can forward the cloud based tasks to the 

cloud system. Before FSB sending a task to any of fog cluster 

it has to check its status. The FSB module uses mist status 

vector (MSV) and fog status vectors (FSV) to get the least 

expected waiting time load cluster in the system.  

Fig. 2. Multi-Level IoT Tasks scheduling (MLITS) system 

The Fog-Mist-Manager (FMM) is responsible for updating 

the values of MSV and FSV. Each of FSV and MSV are 

containing set of objects. Each object describes the status of a 

specific mist or middle fog node in the cluster. Each Fog 

status object contains variables such as; number of idle VMs, 

expected waiting time, overload flag, and real flag. The first 

variable is representing the number of idle VMs of the cluster. 

The total expected waiting time for each cluster is sent by the 

cluster manager periodically. Also, this value is expected by 

FMM after assigning a new task for that cluster. The overload 

flag is a binary variable. This flag is set by 1, if the expected 

waiting time for its cluster exceeds the desired quality of 

service threshold (σ).  Finally, if all VMs of a cluster are busy, 

the cluster manager asks FMM to set real flag by 1. 

Furthermore, if the load over all the system exceeds σ, the 

FMM lock the System load flag to direct the fog based tasks to 

the cloud system. 

The following subsection discusses the structure of the 

mist node. The next subsection describes the components of 

the Orchestrator node. Section 3.C debates the main 

component functionality in the fog middle node.  

IV.A) Mist node 

Service Container Listener (SCL) receives the new added 
services listener and the up-to-date changes of the services 
from the Service Container (SC) in fog orchestrator node. 
Service Container Listener (SCL) directs the new tasks to the 
Mist Broker. The mist broker determines the type of the service 
request tasks. If the type of task is mist based, it allocates the 
task in a local VM, otherwise it send the task to the 
Orchestrator node. In case of all local VMs in the mist node are 
busy, the mist broker computes the expected duration time for 
the new mist based tasks. If the expected duration time doesn’t 
exceed the deadline of the task, mist broker inserts the task in 
the waiting tasks queue, otherwise it sends the task to the 
Orchestrator node. In another word, if there are insufficient 
resources for the mist based tasks, it directs the tasks to the Fog 
Orchestrator node. Also, mist broker sends the fog base tasks 
or cloud base to the Orchestrator node. The main steps of the 
Mist Broker module are shown in the following algorithm. 

IV.B) Orchestrator Node 

The Fog Service Broker (FSB) receives the service request 

tasks from the Mist Brokers. FSB allocates the tasks based on 

its urgency and the available resources, as shown in Fog 

Service Broker algorithm. In another word, this module is 

responsible for mapping between the task urgency level and 

available resources. Moreover, Fog Mist Manager (FMM) is 

responsible for broadcasting a copy of the Service Container 

to all fog and mist computing nodes. In other words, FMM 

should send up-to-date a copy of additional changes in Service 

Container. The Service container contains a copy of the 

services for IoT application. Also, it contains the requirement 

description of each application request. In another word, the 

application developer specifies a set of service requirements; 

for example the service task urgency level, the hardware 

requirements, number of resource units (VMs), replication 

requirement, data movement between services, and 
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relationship between the services (like remote method 

invocation). 

Mist Broker algorithm 

Input 

       t  // service request task 

1.  If(t.type = mist_based) 

2.     IdleVM= getIdelVM() 

3.     If(IdleVM ≠  ) 

4.              Allocates(t, IdleVM) /*Allocate the task  

                                                to idle VM */ 

5.     Else  

6.           ExeTimetewaitingTimmedurationTit exp.(). +=                       

          /* compute the expected duration time*/ 

7.            if ( deadlinetmedurationTit ..  ) 

8.                  Mist.taskqueue.Enqueue(t) 

               /* insert the task in the local task queue*/ 

9.            Else 

10.                 Orchestrator.mistQueue.Enqueue(t) 

              /*Send the t to the mist task queue in  

                  Orchestrator node */ 

11.            End if 

12.     End if 

13.  Elseif((t.type = fog_based)) 

14.            Orchestrator.fogQueue.Enqueue(t) 

15.  Else 

16.            Orchestrator.cloudQueue.Enqueue(t) 

17.  End if 

 
FSB receives tasks of second and the third level of urgency 

from the mist node to choose the best resources for it.  FSB 
allocates the tasks based on resources status information of the 
system node.  The resources status information is written by 
Fog Mist Manager (FMM) in the Fog status vector and Mist 
status vector. Each fog node sends up-to-date information 
about its resources status to FMM periodically or when the 
cluster status is changed. 

Hence, FMM prioritizes the resources allocation for the 
new tasks based on load and the number of idle VMs in each 
cluster. FMM periodically get the total execution time in each 
cluster in the system (mist nodes, and middle fog) from the 
Cluster Manager. Hence, the cluster load can be defined as 
total required time for process the assigned tasks. The mean 
load over all the system ( ) is used by FMM to direct the 

tasks to each cluster node. A cluster can be classified as high 
load if it’s total waiting time greater than . FMM sets the 

overload_flag = 1 for each high load clusters. Hence, the 
overload_flag prohibits FSB to assigning more tasks for high 
load cluster. Moreover, in case of the load of any cluster 
exceeds  , FMM calls Redistributor. The Redistributor 

migrates the tasks from the high to a lowest load cluster, as 
shown in Redistributor algorithm. In another word, FMM 
migrates service requests from the high load cluster to the low 
load clusters. Furthermore, if the system mean load ( ) load 

exceeds specific threshold ( ), FMM sends the incoming 

tasks to the cloud system 

Fog Service Broker (FSB)algorithm 

1.  While (|MistTaskQueue|≠null) or (|FogTaskQueue|≠null)or  

(|cloudTaskQueue|≠null) 

2.  mistTask = MistTaskQueue.FindMinDeadline()  

3.  fogTask  = FogTaskQueue.FindMinDeadline()  

4.  cloudTask  = cloudTaskQueue. Dqueue () 

5.  If(mistTask ≠null) 

6.         FG = Fog_ status_Vecor.Find_idelVM_fog()  /*find   

                                                    fog which has idle VMs */ 

7.         If  FG.idelVM ≠           // fog node has idle machine 

8.               Send_task( FG, t)    // send the task to the fog node 

9.         Else  

10.               FG = Fog_ status_Vecor. Find_lowLoad_fog()  

/*find the lowest  

                                                                                            

load fog */  

11.               Send_task( FG, t)  

12.        End if 

13.  End if 

14.  If( fogTask≠null)                

15.       If(System_load_flag= 0) 

16.               FG = Fog_ status_Vecor. Find_lowLoad_fog()   

                    /*find the lowest load fog */  

17.              Send_task( FG, t) // send the task to the fog node 

18.       Else 

19.               Send_task( cloud, t) // send the task to the cloud 

20.       End if 

21.  End if 

22.  If( cloudTask ≠ null)         // the task type is cloud base 

23.        Send_task( cloud, t)  

24.       End if 

25.  End while 

For each cluster i , the total load can be computed by the 

following equation. 

  +=
i in

l

n

k

kl

x

j

ji pEtwtT /)(

          →(1)

 

Where: 


x

j

jwt : is total execution time of the waiting task in the 

waiting list.  


in

l

lEt : is total execution time for the interleaved process. 

Also, is in the number of VMs in the cluster i.  


in

l

lp : is the total processing power by Million 

instructions per second (MIPS) for each VM in the cluster i. 

If the load of a cluster i exceeds , FMM sets the cluster 

load-flag =1 in the status vector Fog status vector. Hence the 
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mean load over all the system (  ) can be computed as 

follows. 

         nT
n

i

i /)(
1


=

=
                    →(2)

 

Where n is the number of system clusters. 

Fog Mist Manager (FMM) Algorithm 

Input:  

    

iT    //the load of each clusters in the system, where 

},..,1{ ni  

1. While (true){ 

2.        Wait(q)       // collect up-to-date information after 

period q . 

3.        For ( Cci  )          //loop for all clusters 

4.             If ( iT ) 

5.                      1 lagoverload_f. =ic  

6.                     Call Redistributor () 

7.              End if 

8.         End for 

9.       nT
n

i

i /)(
1


=

=  

10.         If (   )     //the system in high load 

11.               System_load_flag=1  /* this flag to direct the 

load to cloud */ 

12.                 Call Redistributor()  

13.           End if                    //the system in low load 

14.          ().sortFSV       // Status Vector  

15.          ().sortMSV     //sort Mist Status Vector  

16. End while 

 

 

IV.C) middle fog nod 

The core component of any middle node in the fog system 
is the Cluster Manager (CM). CM is responsible for monitoring 
the cluster status and sends it to the Fog Orchestrator. It sends 
the total expected waiting time periodically. Also, if all cluster 
VMs are allocated by mist based task, CM asks the Fog 
Orchestrator to suspend sending real tasks. Hence, the Fog-
Mist Manager (FMM) sets the real flag value to one for that 
cluster object in the Fog status vector. Also, after the finishing 
one or more real task, CM sends to the Fog Orchestrator to 
change the real flag to 0. Furthermore, CM preserves QoS for 
any fog tasks by maintaining   as an upper bound for fog 

task waiting time. In other words, the CM request FMM to sets 
overload_flag=1 when the total waiting time in the cluster 
exceeds  . The following table shows the main steps of the 

Cluster Manager algorithm. 

 

 

 

Redistributor Algorithm 

1. For ( Cci  )      // loop over all cluster node 

2. If ( 1 lagoverload_f. =ic )  // if the cluster overloaded 

3.    iT =getClusterLoad( ic )   // get the current cluster load 

4.    While( iT > ) 

5.         Cmin=findMinLoadCluster()  /* find the lightest 

cluster load */ 

6.         MigratedTask = dline()FindMaxDea.ic
 
/* get 

the latest task */ 

7.         If ((MigratedTask+ getClusterLoad(Cmin))<  ) 

8.                   Migrate(MigratedTask, Cmin) 

9.         Else 

10.                   Migrate(MigratedTask, cloud) 

11.         End if 

12.    End While  

13. End if 
14. End for 

 
 

Cluster manager algorithm 

Input 

       s      // a task  

output 

       iT // total load 

1.  If(s.type= mist_based) 

2.  If (Number of idelVM > 0) 

3.             Allocate task s to idle VM 

4.       Else  

5.              Preempt a VM 

6.              Allocate task s to the VM 

7.       End if  

8.  Else            // fog based type 

9.        Allocate s task queue 

10.  End if 

11.    +=
i in

l

n

k

kl

x

j

ji pEtwtT /)(  

12.  If ( iT ) 

13.  Fog_status_vector.overload_flag = 1 

14.  End if 
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IV. SIMULATION SETUP AND EXPECTED RESULTS 

In this section, we will evaluate the feasibility of the MLITS 

model. To obtain this, the technical details of MLITS will be 

depicted firstly in Subsection (IV.A). Hence, the assessment of 

MLITS performance is performed in a two cases. The first 

case, which is obtained in Subsection (IV.B), measures the 

system performance using both of soft and real IoT tasks. The 

second case C inspects the impact of the MLITS model on the 

real time tasks only, as shown in Subsection (IV.C). In each 

case, the test is evaluated based on three parameters; the 

average turnaround time, the average waiting time and the 

throughput. These parameters are evaluated for the proposed 

model and all the other competitive scheduling models. 

IV.A) Simulation Tool (CloudSim) 

To evaluate the proposed model, the fog-mist colony of 

100 nodes was built on simulator CloudSim 3.0.2 [27, 28] to 

execute tasks. This colony is divided into two parts; the first 

part contains the mist nodes which are the half of total nodes, 

while the second part contains the middle fog nodes. The fog-

mist colony is connected to a cloud system to perform a 

portion of tasks which doesn't required real time speed. The 

experiments have been implemented by using Window 7 OS, 

core i5 2.3 GHz processor and NetBeans IDE 7.2.1. 

In this evaluation, the IoT applications are characterized 

by two types (real and soft). The soft-task size is different 

from 0.04 to 0.08 million instructions and have 300 MB of 

incoming and 300 MB of outgoing data. On the other hand, 

real-task requests are ranged from 0.02, 0.04 million 

instructions and also have 300 MB of incoming and 300 MB 

of outgoing data. Each fog node can create 10 VM’s have the 

processing power 500 MIPS. The bandwidth between fog 

nodes is set to 100 Mbit/s, and between the cloud and fog 

nodes to 10 Mbit/s.  

In the simulation test, we suppose that each service in the 

proposed model generates a unique independent task. All test 

values are repeated for 10 times and the average values are 

occupied. MLITS model is compared with three models; Min-

Min Algorithm, Credit Based Scheduling (CBS) Algorithm 

[26], Improved Priority based Job Scheduling Algorithm [27], 

and Earliest Feasible Deadline First (EFDF) [28]. 

IV.B) performance measurement for All types of tasks  

This section contains three experiments. The first 
experiment measures the growing of turnaround time as 
increasing the number of service requests. The second test 
assesses the waiting time of the system. Finally, the last test 
compares the models throughput. 

Turnaround time performance test: the turnaround time for 

a task is defined as the time taken to complete the task. The 

performance comparison, which is based on the Turnaround 

time parameter, is shown in Figure 3.A. All of the tests are 

completed using several workloads, which starts from 1000 up 

to 10,000 tasks. The ration of the real time tasks is 20% from 

all of the integrated workload in each test. Obviously, the 

Mini-Mini curve is increasing rapidly as the load increased. 

The high increasing of the Mini-Mini turnaround time is 

caused by high priority of the short tasks. In another word, 

Mini-Mini algorithm increases the waiting time of the massive 

processing tasks. The CBS model is the closest curve to the 

proposed model since it uses both of the priority task and size 

of the tasks. Unfortunately, CBS and EFDF are suffering from 

the unbalanced load. On the other hand, MLITS model gives 

the best performance since it uses different level of priority 

and load balancing. MLITS overcome the other model by 

allocating the task according to its level of urgency with 

considering the load balance constraints.  

Fig. 3. Performance Comparision using Soft & Real-Time tasks 

The waiting time performance test: The second experiment 

in this test is waiting time performance test. In this 

experiment, the performance evaluation is based on the 

average of the waiting time parameter. This experiment is 

done based on the same system load of the previous 

experiment. The waiting time curves of the compared 
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algorithms are obtained in Figure 3.B. The Mini-Min gives the 

highest waiting time inasmuch it allocates the shortst task will 

allocated in the fastest resources. The reason for the high 

increase in Mini-Min waiting time is due to allocating the fast 

resources to the short tasks. Therefore, the long tasks will be 

allocated in the slow resources or it will be starved. The 

reason for the of the waiting time for Mini-Min is that the fast 

resources will be allocated to the short tasks will  the long 

tasks will have slow resources or starving .  

Also, at the low load of services requests the CBS is much 

closer to the proposed model. Moreover, the waiting time of 

CBS and EFDF curves are increased dramatically. This is 

caused by long tasks are starving.    
The throughput performance test: The throughput is 

calculated as the number of the finished tasks per unite time. 
Figure 3.C obtains a throughput comparison between the 
competitive models. Similarly, this test is accomplished on the 
same workload of the previous experiments. EFDF model 
gives the worst throughput, since its scheduling model is only 
based on the task deadline. Also, at the low load the Min-Min 
is so closed to the EFDF model. Furthermore, the differences 
between the curves are low in the light load of the system, but 
as increasing the system load the performance of the MLITS is 
overpass. 

IV.C) Real Task performance measurement  

This test is carrying out to evaluate the influence of the 

proposed system on the real time tasks. This test is carried out 

to evaluate the influence of the proposed system on the real 

time tasks. Tests are reiterated for 10 times. In each 

experiment the ratio of the real time requests is 20% from the 

inserted workload. 

Fig. 4. Real-Tasks Turnaround Time Test. 

This section exhibits the influence of the compared models 

on the real-time services requests. The following experiments 

are done using the same test parameters as previous tests.  

Turnaround time performance test: The first experiment 

measures the average turnaround time, as shown in Figure 

4.A. The worst results are obtained by the curves that 

represent the Min-Min, CBS and the EFDF respectively. 

However, the main shortages of the previous models are the 

disability to load balancing and serving the real time tasks 

according to their urgency level. I.e. the task urgency type 

determines the type of the allocated VM (mist, fog, or cloud). 

Min-Min has the worst performance since it doesn’t 

distinguish between the real or soft tasks. In the other hand, 

CBS and EFDF distinguish between the real and the soft tasks 

but it can’t distinguish the types of real tasks. 

The waiting time performance test: The averages of 

waiting time curves that expose the impact of the MLITS 

model on the finishing of the real tasks are shown in Figure 

4.B. In this figure, the MLITS has the least waiting time. In 

point of fact, the prosed model gives the highest priority to the 
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real tasks. Also, the load balancing strategy and the 

classification of the real time tasks are contributing rapid the 

process of resource allocations. However, the CBS is the 

closest curve to the MLITS through overall compared model. 

Unfortunately, the increasing of the number of tasks in CSS 

model is increasing its intermediate layer delay. Therefore, the 

deadline for the real time service may be broken for the other 

methods. 

The throughput performance test: The throughputs curves 

of the compared models are obtained in Figure 4.C. 

Obviously, the best throughput is completed by MLITS 

model. The throughput results oscillate between 97% and 

100% for all the inputs of the variant loads for the real tasks. 

Obviously, MLITS has the highest throughput. The high 

throughput of MLITS is caused by load balancing among the 

different level of mist-fog-cloud architecture. Since CBS give 

the short task to the speediest resources, therefore the closest 

curve to the MLITS is CBS.  

To judge about the suitability of the algorithm for real time 

services, the task failure should be concerned. Figure 4.D 

measures the ratio of the failed real time tasks for each 

compared model. The ratio of the failed tasks for the MLITS 

model can be neglected if compared with the other models. 

CBS and EFDF models have an acceptable performance in 

low load of the real time tasks. But, CBS is concerned on the 

task size with the task priority in resources allocation. Due to 

resources allocation strategy in CBS depends two factors, the 

task size in additional to the priority, which it causes 

increasing in failure ratio in case of high load system. In 

another hand, EFDF scheduling method reduces the failure 

rate by concerning only on the deadline. But, this strategy is 

failed without considering the type of the resources and the 

service requirement. 

V. CONCLUSION AND FUTURE WORK 

In this paper, MLITS model is designed for integrate the 
mist with fog and cloud computing environment to enhance the 
data collection and processing in IoT environment. The 
proposed model is responsible for handling soft and real time 
tasks with different type of urgency in Mist-Fog-Cloud colony. 
The MLITS is an orchestration model that fit the rapid 
increasing scale of IoT deployments. the proposed model 
maintains the load balance among the extreme edge node of 
fog and the middle fog node. Moreover, MLITS classify the 
tasks by the urgency and the computation density. This model 
is designed to handle the real time tasks in additional to 
maintain QoS for the soft-tasks. The experiments exhibit that 
the proposed model outperforms the compared models. In 
future work, this model will be developed to manage the 
heterogeneous resources. 
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