
Informatics Bulletin, Faculty of Computers and Information, Helwan University,

Published Online Vol 2 Issue 1, January 2020

(http://fcihib.fci.helwan.edu.eg)

1

MLITS:Multi-Level tasks scheduling model for IoT

Service Provisioning

Hosam E. Refaat

Dept. of Information System

Faculty of Computers and Informatics

Suez Canal University, Egypt.

hosam.refaat@ci.suez.edu.eg

Abstract— In Internet of Things (IoT) environment there are

a huge number of devices that need to communicate and send

data continuously between these devices also between them and

the cloud data center. This data is increasing exponentially,

exposing the IoT environment to collapse. Therefore, so we need

an environment that supports the stability of the IoT and at the

same time increases the speed of exchange huge data between IoT

devices. Fog computing and mist computing support real time

data collection and analysis locally at IoT devices. In addition,

fog computing and mist computing overcome on various

challenges like network bandwidth, and reliability. Resource

management and allocation for IoT tasks in three levels mist-fog-

cloud architecture suffer from a lack of approaches and

frameworks that handle this situation in an efficient manner. In

order to address this shortage, Multi-Level IoT Tasks Scheduling

(MLITS) model is introduced in this paper. MLITS is an

orchestration system for managing and allocating IoT tasks over

the mist-fog-cloud architecture. The proposed model performs

IoT tasks based on their deadline and the urgency of their

execution. In addition, it performs various types of IoT tasks

without rapidly consuming available sources. Moreover, the

proposed model maintains the resource usage balanced. Finally,

The MLITS is simulated and evaluated on truthful fog resources

and various workload circumstances. Also, the proposed

scheduling model is compared with three scheduling model,

namely; Min-Min, Credit-Based-Scheduling (CBS) and Earliest-

Feasible-Deadline-First (EFDF). Through extensive simulations,

we show that our proposed model enhances the performance

metrics, namely; turnaround time, waiting time and throughput.

Keywords— Cloud Computing, Fog Computing, Mist

Computing, IoT, Load balancing, Reliability.

I. INTRODUCTION

The idea of the IoT emerged from the fact that most devices
and humans are connected most of the time to the Internet [1].
The IoT is a modern technique that is designed to allow all
types of devices including tools, sensors, various Artificial
Intelligent (AI) tools and more to communicate data between
them in a secure manner [2]. To implement the concept of
Internet of Things we need a communication infrastructure,
and computational units [3]. Cloud computing introduces
storage resources, communication and computing provisioning
for IoT [4]. Furthermore, it hides all complexity of IoT services
and applications. The integration of cloud and IoT is called
CloudIoT paradigm. This integration helps to provide new

types of applications and services based on IoT. There are
various works that introduces this integration [5, 6, 7, 8].

Although this integration has been successful in many
cases, it suffers from some shortcomings of presence of
thousands of billion IoT devices that generate huge data and
needs real-time analysis [9, 10, 11]. The implementation of
large IoT devices and services is increasing the service latency
by using cloud computing in unacceptable manner. Moreover,
the energy consumption to transfer data is high. Therefore, it
affects the consumption of batteries of IoT devices
significantly, which we need to maintain its capacity for a long
time. More broadly, the use of cloud computing alone suffers
from the fact that the (IOT) is vulnerable to hacking and loss of
security. Fog computing architecture gives a reliable solution
to solve most of the problems associated with using Cloud
computing architecture [9, 12, 13].

Fog computing is an extension for the cloud computing, it
introduces a real-time and low latency services to billions of
IoT devices at the edge of the network [14, 15]. It considered
as virtual platform between IoT and cloud computing
architecture. It can handle large-scale distributed devices and
systems and support the heterogeneity of these devices and
systems. Fog computing environment contains two types of
nodes. The first type is the extreme edge node which is also
called mist node. The mist computing facilitates the
deployment of IoT services with its combination with IoT
devices [16, 17]. It brings the computation closer to sensors
and actuators in IoT environment. The second type is middle
fog nodes which represent additional resources in the fog
system and far from the IoT devices. Also, the mist computing
is integrated with the fog computing and cloud computing
concepts to enhance the data collection and processing in IoT
environment. Therefore, the mist-fog-cloud colony will reduce
the network delay and consequently the energy consuming for
all nodes in mist, and fog, layers [18, 19], as shown in Figure
1.

IoT tasks can be classified into four types, real-time tasks
that have less computation density, real-time tasks that have
high computation density, Non-real time tasks that have
specific requirement of Quality-of-Service (QoS), and Non-real
time tasks that required massive amount of resources and huge-
volume storage [20].

mailto:hosam.refaat@ci.suez.edu.eg

Bulletin of Informatics, Helwan University, Vol 2 Issue 1, January 2020

2

In this paper a new framework based on mist-fog-cloud
architecture is proposed to manage and execute IoT tasks in an
efficiency manner. Multi-Level-IoT-Task-Scheduling
(MLITS) model is proposed to overcome these challenges of
management. It allocates the various types of IoT tasks
according to their urgency. Also, the proposed model maintains
a balanced load among the different types of system cluster
nodes. Besides, this model Maintains energy consumption rates

for IoT devices, mist and fog nodes.

II. RELATED WORK

In this paper, analysis of various research in the field of
Mist computing, fog computing, cloud computing and IoT
integration are introduced. Fog computing frameworks are able
to facilitate all IoT needs [21]. Resource management, IoT
devices communication, all of them can be management by fog
computing frameworks. In [21], Sarkar introduces a theoretical
model of fog computing framework that can be integrated with
IoT. He measures the service latency and energy consumption
compared to cloud computing approach. Also, Rahman et.al in
[19] introduces Internet-of-Healthcare-Things (IoHT)
framework. Unfortunately, this framework is based on static
load balancing. There are various fog computing frameworks
that can be integrated with IoT to provide many tools to
manage IoT services [22, 23].

A Distributed Dataflow programming model is proposed in
[22] to manage IoT application in Fog computing environment.
In this framework the most requirements to build IoT
application are determined and processed. However, no
measure of performance has been provided to measure the
effectiveness of this framework. In [23] a new fog computing
framework to resource allocation for IoT is proposed. In this
framework the latency is reduced, and the fault tolerance and
privacy are considered.

Fig. 1. IoT with Mist-Fog-Cloud colony

Mist computing enhances the communication and
computing availability for all nodes and IoT devices. Cloud,

fog, and mist computing work together to introduce the Mist-
Fog-Cloud architecture [19, 24] that enhances the IoT
environment. The proposed work in this paper deals with this
new architecture to capture its advantage that fit IoT
environment.

There are various frameworks that which are similar to our
work. Min-Min Algorithm, Credit-Based-Scheduling (CBS)
Algorithm, Improved Priority based Job Scheduling Algorithm,
and Earliest-Feasible-Deadline-First (EFDF) are four research
that try to allocate IoT tasks in an efficiency way in cloud
computing environment. These researches are used to evaluate
the proposed MLITS model.

In [25] the Min-Min Algorithm for task scheduling is
introduced. It is based on minimum completion time (MCT)
for tasks to allocate them to resources. In this algorithm, the
task that has less time to use the resources is allocated firstly.

In [26] the Credit-Based-Scheduling (CBS) Algorithm is
proposed. CBS algorithm concentrates on tasks criteria,
priority and length, to management their scheduling. The task
deadline did not implement in this work and left for the future.
In [27] an improvement in priority-based job scheduling
algorithm is introduced. The task priority is considered the
major factor in this research to enhance the makespan for tasks
scheduling. The EFDF algorithm is introduced in [28]. The
tasks deadline is main attribute to schedule them in this
algorithm. It arranges all tasks in a queue based on their closest
to its deadline, then pick up one of them to be allocated.
Finally, all of these algorithms Suffer from the limited factors
that deal with to schedule tasks. In another word, these
algorithms are focus on a specific scheduling criterion such as
priority and neglecting the other criteria such as; task size, and
deadline.

III. PROPOSED MODEL

The proposed model contains three tiers: IoT, fog and
cloud. The first tier is IoT which sometimes is also referred to
as “IoT &dew”. This tier is responsible for interact with the
world. IoT includes the sensors for collecting the data from the
environment, and the actors which have an effect on it. Dew is
a solution for real time IoT applications, which required
computation resources with a negligible delay. Unfortunately,
Dew supports limited computing power and storage resources.
The second layer is the fog tier, which is divided into two sub-
layers; mist and middle fog level. The mist layer provides
dedicated nodes, which can be accessible with low
communication overhead. In another word, the mist nodes are
closed to IoT devices. On the other hand, the middle fog layer
contains fog nodes and orchestration node. The orchestration
node is responsible for managing the load among the mist
nodes and middle fog nodes. The last layer is cloud computing,
which provides boundless amount of computing nodes, and
huge-volume storage.

Obviously, any IoT application can be consisted of one or

more services. These services create one or more tasks, which

will be executed on one or more of resource units (VMs) in

cloud, fog, or mist. The discernment in between mist, fog, or

cloud in resource allocation is depending on the urgency of the

generated tasks by the service. Hence, there are four levels of

Bulletin of Informatics, Helwan University, Vol 2 Issue 1, January 2020

3

task urgency. The first level is the highest time urgency, which

required less computation density. This type of tasks can be

calculated by the dew computing nodes, which are called dew-

based-tasks. The second level of task urgency is also has a

highest time urgency but it required high computation density.

This type of tasks will be assigned to one of mist nodes, which

is called mist-based-tasks. The third level of task urgency has

specific QoS threshold. This type of tasks will be assigned to

fog nodes in the middle fog level. Also, this type of tasks is

called fog-based-tasks. The last type of tasks, which isn't real-

time tasks and required massive amount of resources and

huge-volume storage, will be assigned to the cloud nodes.

This type is called cloud-based-tasks.

MLITS supports various levels of management

mechanisms to deal with the IoT service requirements. Figure

2 depicts the global architecture of the proposed model and

functionality of its components. Frist of all, the first type of

task urgency is handled by the dew computing node.

Consequently, the mist node will receive the remaining types

of task urgency (second, third and fourth urgency level). The

mist nodes receive these types of tasks by the Service

Container Listener (SCL). SCL asks the Mist broker to

allocate the required resources for the received tasks. In

another word, the SCL directs the tasks to the mist broker.

The mist broker assigns the second type of task urgency

(mist based tasks) to its local VMs and forwards the other

tasks to the Fog Orchestrator node. The Orchestrator node

contains three queues for buffering the received tasks from

mist nodes. The Fog Service Broker (FSB) module in the Fog

Orchestrator node receives the third and the fourth types of

task urgency. Moreover, the Orchestrator node receives the

mist base tasks in the case of the mist node doesn’t has

sufficient resources. Hence, it takes the decision of to process

the mist based tasks in one of the middle fog node. Also,

Orchestrator node can forward the cloud based tasks to the

cloud system. Before FSB sending a task to any of fog cluster

it has to check its status. The FSB module uses mist status

vector (MSV) and fog status vectors (FSV) to get the least

expected waiting time load cluster in the system.

Fig. 2. Multi-Level IoT Tasks scheduling (MLITS) system

The Fog-Mist-Manager (FMM) is responsible for updating

the values of MSV and FSV. Each of FSV and MSV are

containing set of objects. Each object describes the status of a

specific mist or middle fog node in the cluster. Each Fog

status object contains variables such as; number of idle VMs,

expected waiting time, overload flag, and real flag. The first

variable is representing the number of idle VMs of the cluster.

The total expected waiting time for each cluster is sent by the

cluster manager periodically. Also, this value is expected by

FMM after assigning a new task for that cluster. The overload

flag is a binary variable. This flag is set by 1, if the expected

waiting time for its cluster exceeds the desired quality of

service threshold (σ). Finally, if all VMs of a cluster are busy,

the cluster manager asks FMM to set real flag by 1.

Furthermore, if the load over all the system exceeds σ, the

FMM lock the System load flag to direct the fog based tasks to

the cloud system.

The following subsection discusses the structure of the

mist node. The next subsection describes the components of

the Orchestrator node. Section 3.C debates the main

component functionality in the fog middle node.

IV.A) Mist node

Service Container Listener (SCL) receives the new added
services listener and the up-to-date changes of the services
from the Service Container (SC) in fog orchestrator node.
Service Container Listener (SCL) directs the new tasks to the
Mist Broker. The mist broker determines the type of the service
request tasks. If the type of task is mist based, it allocates the
task in a local VM, otherwise it send the task to the
Orchestrator node. In case of all local VMs in the mist node are
busy, the mist broker computes the expected duration time for
the new mist based tasks. If the expected duration time doesn’t
exceed the deadline of the task, mist broker inserts the task in
the waiting tasks queue, otherwise it sends the task to the
Orchestrator node. In another word, if there are insufficient
resources for the mist based tasks, it directs the tasks to the Fog
Orchestrator node. Also, mist broker sends the fog base tasks
or cloud base to the Orchestrator node. The main steps of the
Mist Broker module are shown in the following algorithm.

IV.B) Orchestrator Node

The Fog Service Broker (FSB) receives the service request

tasks from the Mist Brokers. FSB allocates the tasks based on

its urgency and the available resources, as shown in Fog

Service Broker algorithm. In another word, this module is

responsible for mapping between the task urgency level and

available resources. Moreover, Fog Mist Manager (FMM) is

responsible for broadcasting a copy of the Service Container

to all fog and mist computing nodes. In other words, FMM

should send up-to-date a copy of additional changes in Service

Container. The Service container contains a copy of the

services for IoT application. Also, it contains the requirement

description of each application request. In another word, the

application developer specifies a set of service requirements;

for example the service task urgency level, the hardware

requirements, number of resource units (VMs), replication

requirement, data movement between services, and

Bulletin of Informatics, Helwan University, Vol 2 Issue 1, January 2020

4

relationship between the services (like remote method

invocation).

Mist Broker algorithm

Input

 t // service request task

1. If(t.type = mist_based)

2. IdleVM= getIdelVM()

3. If(IdleVM ≠ )

4. Allocates(t, IdleVM) /*Allocate the task

 to idle VM */

5. Else

6. ExeTimetewaitingTimmedurationTit exp.(). +=

 /* compute the expected duration time*/

7. if (deadlinetmedurationTit .. )

8. Mist.taskqueue.Enqueue(t)

 /* insert the task in the local task queue*/

9. Else

10. Orchestrator.mistQueue.Enqueue(t)

 /*Send the t to the mist task queue in

 Orchestrator node */

11. End if

12. End if

13. Elseif((t.type = fog_based))

14. Orchestrator.fogQueue.Enqueue(t)

15. Else

16. Orchestrator.cloudQueue.Enqueue(t)

17. End if

FSB receives tasks of second and the third level of urgency

from the mist node to choose the best resources for it. FSB
allocates the tasks based on resources status information of the
system node. The resources status information is written by
Fog Mist Manager (FMM) in the Fog status vector and Mist
status vector. Each fog node sends up-to-date information
about its resources status to FMM periodically or when the
cluster status is changed.

Hence, FMM prioritizes the resources allocation for the
new tasks based on load and the number of idle VMs in each
cluster. FMM periodically get the total execution time in each
cluster in the system (mist nodes, and middle fog) from the
Cluster Manager. Hence, the cluster load can be defined as
total required time for process the assigned tasks. The mean
load over all the system () is used by FMM to direct the

tasks to each cluster node. A cluster can be classified as high
load if it’s total waiting time greater than . FMM sets the

overload_flag = 1 for each high load clusters. Hence, the
overload_flag prohibits FSB to assigning more tasks for high
load cluster. Moreover, in case of the load of any cluster
exceeds  , FMM calls Redistributor. The Redistributor

migrates the tasks from the high to a lowest load cluster, as
shown in Redistributor algorithm. In another word, FMM
migrates service requests from the high load cluster to the low
load clusters. Furthermore, if the system mean load () load

exceeds specific threshold (), FMM sends the incoming

tasks to the cloud system

Fog Service Broker (FSB)algorithm

1. While (|MistTaskQueue|≠null) or (|FogTaskQueue|≠null)or

(|cloudTaskQueue|≠null)

2. mistTask = MistTaskQueue.FindMinDeadline()

3. fogTask = FogTaskQueue.FindMinDeadline()

4. cloudTask = cloudTaskQueue. Dqueue ()

5. If(mistTask ≠null)

6. FG = Fog_ status_Vecor.Find_idelVM_fog() /*find

 fog which has idle VMs */

7. If FG.idelVM ≠  // fog node has idle machine

8. Send_task(FG, t) // send the task to the fog node

9. Else

10. FG = Fog_ status_Vecor. Find_lowLoad_fog()

/*find the lowest

load fog */

11. Send_task(FG, t)

12. End if

13. End if

14. If(fogTask≠null)

15. If(System_load_flag= 0)

16. FG = Fog_ status_Vecor. Find_lowLoad_fog()

 /*find the lowest load fog */

17. Send_task(FG, t) // send the task to the fog node

18. Else

19. Send_task(cloud, t) // send the task to the cloud

20. End if

21. End if

22. If(cloudTask ≠ null) // the task type is cloud base

23. Send_task(cloud, t)

24. End if

25. End while

For each cluster i , the total load can be computed by the

following equation.

  +=
i in

l

n

k

kl

x

j

ji pEtwtT /)(

 →(1)

Where:


x

j

jwt : is total execution time of the waiting task in the

waiting list.


in

l

lEt : is total execution time for the interleaved process.

Also, is in the number of VMs in the cluster i.


in

l

lp : is the total processing power by Million

instructions per second (MIPS) for each VM in the cluster i.

If the load of a cluster i exceeds , FMM sets the cluster

load-flag =1 in the status vector Fog status vector. Hence the

Bulletin of Informatics, Helwan University, Vol 2 Issue 1, January 2020

5

mean load over all the system () can be computed as

follows.

 nT
n

i

i /)(
1


=

=
 →(2)

Where n is the number of system clusters.

Fog Mist Manager (FMM) Algorithm

Input:

iT //the load of each clusters in the system, where

},..,1{ ni

1. While (true){

2. Wait(q) // collect up-to-date information after

period q .

3. For (Cci ) //loop for all clusters

4. If (iT)

5. 1 lagoverload_f. =ic

6. Call Redistributor ()

7. End if

8. End for

9. nT
n

i

i /)(
1


=

=

10. If ( ) //the system in high load

11. System_load_flag=1 /* this flag to direct the

load to cloud */

12. Call Redistributor()

13. End if //the system in low load

14. ().sortFSV // Status Vector

15. ().sortMSV //sort Mist Status Vector

16. End while

IV.C) middle fog nod

The core component of any middle node in the fog system
is the Cluster Manager (CM). CM is responsible for monitoring
the cluster status and sends it to the Fog Orchestrator. It sends
the total expected waiting time periodically. Also, if all cluster
VMs are allocated by mist based task, CM asks the Fog
Orchestrator to suspend sending real tasks. Hence, the Fog-
Mist Manager (FMM) sets the real flag value to one for that
cluster object in the Fog status vector. Also, after the finishing
one or more real task, CM sends to the Fog Orchestrator to
change the real flag to 0. Furthermore, CM preserves QoS for
any fog tasks by maintaining  as an upper bound for fog

task waiting time. In other words, the CM request FMM to sets
overload_flag=1 when the total waiting time in the cluster
exceeds  . The following table shows the main steps of the

Cluster Manager algorithm.

Redistributor Algorithm

1. For (Cci ) // loop over all cluster node

2. If (1 lagoverload_f. =ic) // if the cluster overloaded

3. iT =getClusterLoad(ic) // get the current cluster load

4. While(iT >)

5. Cmin=findMinLoadCluster() /* find the lightest

cluster load */

6. MigratedTask = dline()FindMaxDea.ic

/* get

the latest task */

7. If ((MigratedTask+ getClusterLoad(Cmin))< )

8. Migrate(MigratedTask, Cmin)

9. Else

10. Migrate(MigratedTask, cloud)

11. End if

12. End While

13. End if
14. End for

Cluster manager algorithm

Input

 s // a task

output

 iT // total load

1. If(s.type= mist_based)

2. If (Number of idelVM > 0)

3. Allocate task s to idle VM

4. Else

5. Preempt a VM

6. Allocate task s to the VM

7. End if

8. Else // fog based type

9. Allocate s task queue

10. End if

11.   +=
i in

l

n

k

kl

x

j

ji pEtwtT /)(

12. If (iT)

13. Fog_status_vector.overload_flag = 1

14. End if

Bulletin of Informatics, Helwan University, Vol 2 Issue 1, January 2020

6

IV. SIMULATION SETUP AND EXPECTED RESULTS

In this section, we will evaluate the feasibility of the MLITS

model. To obtain this, the technical details of MLITS will be

depicted firstly in Subsection (IV.A). Hence, the assessment of

MLITS performance is performed in a two cases. The first

case, which is obtained in Subsection (IV.B), measures the

system performance using both of soft and real IoT tasks. The

second case C inspects the impact of the MLITS model on the

real time tasks only, as shown in Subsection (IV.C). In each

case, the test is evaluated based on three parameters; the

average turnaround time, the average waiting time and the

throughput. These parameters are evaluated for the proposed

model and all the other competitive scheduling models.

IV.A) Simulation Tool (CloudSim)

To evaluate the proposed model, the fog-mist colony of

100 nodes was built on simulator CloudSim 3.0.2 [27, 28] to

execute tasks. This colony is divided into two parts; the first

part contains the mist nodes which are the half of total nodes,

while the second part contains the middle fog nodes. The fog-

mist colony is connected to a cloud system to perform a

portion of tasks which doesn't required real time speed. The

experiments have been implemented by using Window 7 OS,

core i5 2.3 GHz processor and NetBeans IDE 7.2.1.

In this evaluation, the IoT applications are characterized

by two types (real and soft). The soft-task size is different

from 0.04 to 0.08 million instructions and have 300 MB of

incoming and 300 MB of outgoing data. On the other hand,

real-task requests are ranged from 0.02, 0.04 million

instructions and also have 300 MB of incoming and 300 MB

of outgoing data. Each fog node can create 10 VM’s have the

processing power 500 MIPS. The bandwidth between fog

nodes is set to 100 Mbit/s, and between the cloud and fog

nodes to 10 Mbit/s.

In the simulation test, we suppose that each service in the

proposed model generates a unique independent task. All test

values are repeated for 10 times and the average values are

occupied. MLITS model is compared with three models; Min-

Min Algorithm, Credit Based Scheduling (CBS) Algorithm

[26], Improved Priority based Job Scheduling Algorithm [27],

and Earliest Feasible Deadline First (EFDF) [28].

IV.B) performance measurement for All types of tasks

This section contains three experiments. The first
experiment measures the growing of turnaround time as
increasing the number of service requests. The second test
assesses the waiting time of the system. Finally, the last test
compares the models throughput.

Turnaround time performance test: the turnaround time for

a task is defined as the time taken to complete the task. The

performance comparison, which is based on the Turnaround

time parameter, is shown in Figure 3.A. All of the tests are

completed using several workloads, which starts from 1000 up

to 10,000 tasks. The ration of the real time tasks is 20% from

all of the integrated workload in each test. Obviously, the

Mini-Mini curve is increasing rapidly as the load increased.

The high increasing of the Mini-Mini turnaround time is

caused by high priority of the short tasks. In another word,

Mini-Mini algorithm increases the waiting time of the massive

processing tasks. The CBS model is the closest curve to the

proposed model since it uses both of the priority task and size

of the tasks. Unfortunately, CBS and EFDF are suffering from

the unbalanced load. On the other hand, MLITS model gives

the best performance since it uses different level of priority

and load balancing. MLITS overcome the other model by

allocating the task according to its level of urgency with

considering the load balance constraints.

Fig. 3. Performance Comparision using Soft & Real-Time tasks

The waiting time performance test: The second experiment

in this test is waiting time performance test. In this

experiment, the performance evaluation is based on the

average of the waiting time parameter. This experiment is

done based on the same system load of the previous

experiment. The waiting time curves of the compared

Bulletin of Informatics, Helwan University, Vol 2 Issue 1, January 2020

7

algorithms are obtained in Figure 3.B. The Mini-Min gives the

highest waiting time inasmuch it allocates the shortst task will

allocated in the fastest resources. The reason for the high

increase in Mini-Min waiting time is due to allocating the fast

resources to the short tasks. Therefore, the long tasks will be

allocated in the slow resources or it will be starved. The

reason for the of the waiting time for Mini-Min is that the fast

resources will be allocated to the short tasks will the long

tasks will have slow resources or starving .

Also, at the low load of services requests the CBS is much

closer to the proposed model. Moreover, the waiting time of

CBS and EFDF curves are increased dramatically. This is

caused by long tasks are starving.
The throughput performance test: The throughput is

calculated as the number of the finished tasks per unite time.
Figure 3.C obtains a throughput comparison between the
competitive models. Similarly, this test is accomplished on the
same workload of the previous experiments. EFDF model
gives the worst throughput, since its scheduling model is only
based on the task deadline. Also, at the low load the Min-Min
is so closed to the EFDF model. Furthermore, the differences
between the curves are low in the light load of the system, but
as increasing the system load the performance of the MLITS is
overpass.

IV.C) Real Task performance measurement

This test is carrying out to evaluate the influence of the

proposed system on the real time tasks. This test is carried out

to evaluate the influence of the proposed system on the real

time tasks. Tests are reiterated for 10 times. In each

experiment the ratio of the real time requests is 20% from the

inserted workload.

Fig. 4. Real-Tasks Turnaround Time Test.

This section exhibits the influence of the compared models

on the real-time services requests. The following experiments

are done using the same test parameters as previous tests.

Turnaround time performance test: The first experiment

measures the average turnaround time, as shown in Figure

4.A. The worst results are obtained by the curves that

represent the Min-Min, CBS and the EFDF respectively.

However, the main shortages of the previous models are the

disability to load balancing and serving the real time tasks

according to their urgency level. I.e. the task urgency type

determines the type of the allocated VM (mist, fog, or cloud).

Min-Min has the worst performance since it doesn’t

distinguish between the real or soft tasks. In the other hand,

CBS and EFDF distinguish between the real and the soft tasks

but it can’t distinguish the types of real tasks.

The waiting time performance test: The averages of

waiting time curves that expose the impact of the MLITS

model on the finishing of the real tasks are shown in Figure

4.B. In this figure, the MLITS has the least waiting time. In

point of fact, the prosed model gives the highest priority to the

Bulletin of Informatics, Helwan University, Vol 2 Issue 1, January 2020

8

real tasks. Also, the load balancing strategy and the

classification of the real time tasks are contributing rapid the

process of resource allocations. However, the CBS is the

closest curve to the MLITS through overall compared model.

Unfortunately, the increasing of the number of tasks in CSS

model is increasing its intermediate layer delay. Therefore, the

deadline for the real time service may be broken for the other

methods.

The throughput performance test: The throughputs curves

of the compared models are obtained in Figure 4.C.

Obviously, the best throughput is completed by MLITS

model. The throughput results oscillate between 97% and

100% for all the inputs of the variant loads for the real tasks.

Obviously, MLITS has the highest throughput. The high

throughput of MLITS is caused by load balancing among the

different level of mist-fog-cloud architecture. Since CBS give

the short task to the speediest resources, therefore the closest

curve to the MLITS is CBS.

To judge about the suitability of the algorithm for real time

services, the task failure should be concerned. Figure 4.D

measures the ratio of the failed real time tasks for each

compared model. The ratio of the failed tasks for the MLITS

model can be neglected if compared with the other models.

CBS and EFDF models have an acceptable performance in

low load of the real time tasks. But, CBS is concerned on the

task size with the task priority in resources allocation. Due to

resources allocation strategy in CBS depends two factors, the

task size in additional to the priority, which it causes

increasing in failure ratio in case of high load system. In

another hand, EFDF scheduling method reduces the failure

rate by concerning only on the deadline. But, this strategy is

failed without considering the type of the resources and the

service requirement.

V. CONCLUSION AND FUTURE WORK

In this paper, MLITS model is designed for integrate the
mist with fog and cloud computing environment to enhance the
data collection and processing in IoT environment. The
proposed model is responsible for handling soft and real time
tasks with different type of urgency in Mist-Fog-Cloud colony.
The MLITS is an orchestration model that fit the rapid
increasing scale of IoT deployments. the proposed model
maintains the load balance among the extreme edge node of
fog and the middle fog node. Moreover, MLITS classify the
tasks by the urgency and the computation density. This model
is designed to handle the real time tasks in additional to
maintain QoS for the soft-tasks. The experiments exhibit that
the proposed model outperforms the compared models. In
future work, this model will be developed to manage the
heterogeneous resources.

REFERENCES

[1] Rafiullah Khan, Sarmad Ullah Khan, Rifaqat Zaheer and Shahid Khan,
”Future Internet: The Internet of Things Architecture, Possible
Applications and Key Challenges,” in Proceedings of Frontiers of
Information Technology (FIT), 2012, pp. 257-260

[2] J. Zheng, D. Simplot-Ryl, C. Bisdikian, and H. Mouftah, “The Internet
of Things,” in IEEE Communications Magazine, Volume:49 , Issue: 11,
2011, pp:30-31.

[3] Gigli, M. and Koo, S. (2011) Internet of Things, Services and
Applications Categorization. Advances in Internet of Things, 1, 27-31.
http://dx.doi.org/10.4236/ait.2011.12004

[4] Alessio Botta et al. ,“On the Integraton of Cloud Ccomputing and
Internet of Things ”, International Conference on Future Internet of
Things and Cloud, 2014, pp. 9-21

[5] Gomes, M. M., Righi, R. d. R., da Costa, C. A. Future directions for
providing better iot infrastructure. In: Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing:
Adjunct Publication. UbiComp ’14 Adjunct. 2014, pp. 51–54.

[6] Alhakbani, N., Hassan, M. M., Hossain, M. A., Alnuem, M. A frame-
work of adaptive interaction support in cloud-based internet of things
(iot) envi-ronment. In: Internet and Distributed Computing Systems.
Springer, 2014, pp. 136–146.

[7] Ballon, P., Glidden, J., Kranas, P., Menychtas, A., Ruston, S., Van Der
Graaf, S. Is there a need for a cloud platform for european smart cities?
In: eChallenges e-2011 Conference Proceedings, IIMC International
Information Management Corporation. 2011, pp. 1-7

[8] Niedermayer, H., Holz, R., Pahl, M.-O., Carle, G., 2010. On using home
net-works and cloud computing for a future internet of things. In: Future
Internet-FIS, Springer. 2009, pp. 70–80.

[9] Sarkar, S., Misra, S., “Theoretical modelling of fog computing: a green
com-puting paradigm to support iot applications”, IET Networks 5(2),
2016, pp. 23–29

[10] MarketWatch: ‘Cisco delivers vision of fog computing to accelerate
value from billions of connected devices’, available at
http://www.theiet.org/resources/ journals/research/index.cfm, accessed
August 2014

[11] Hong, K., Lillethun, D., Ramachandran, U., et al.: ‘Mobile fog: A
program-ming model for large-scale applications on the internet of
things’. Proc. of the Se-cond ACM SIGCOMM Workshop on Mobile
Cloud Computing, Hong Kong, China, August 2013, pp. 15–20

[12] Stolfo, S.F., Salem, M.B., Keromytis, A.D.: ‘Fog computing: Mitigating
insider data theft attacks in the cloud’. IEEE Symp. on Security and
Privacy Workshops, San Francisco, USA, May 2012, pp. 125–128

[13] Preden, J.S., Tammemae, K., Jantsch, A., et al.: ‘The benefits of self-
awareness and attention in fog and mist computing’, Comput. Mag., 48,
(7), 2015, pp. 37–45

[14] Bonomi, F., Milito, R., Zhu, J., et al.: ‘Fog computing and its role in the
in-ternet of things’. Proc. of the First Edition of the MCC Workshop on
Mobile Cloud Computing (ACM), Helsinki, Finland, August 2012, pp.
13–16

[15] Bonomi, F., Milito, R., Natarajan, P., et al.: ‘Fog Computing: A platform
for internet of things and analytics’, in Bessis, N., Dobre, C. (Eds.): ‘Big
data and in-ternet of things: a roadmap for smart environments – part I’
(Springer International Publishing, Switzerland, 2014), vol. 546, 2014,
pp. 169–186

[16] J.S. Preden, K. Tammemäe, A. Jantsch, M. Leier, A. Riid, E. Calis, The
bene-fits of self-awareness and attention in fog and mist computing.
Computer 48 (7), 2015, pp. 37–45.

[17] Manas Kumar Yogi, K. Chandrasekhar, G. Vijay Kumar - Mist
Computing: Principles, Trends and Future Direction, SSRG
International Journal of Computer Science and Engineering (SSRG-
IJCSE) – volume 4 Issue 7 – July 2017

[18] Mihai, Viorel et al. “WSN and Fog Computing Integration for
Intelligent Data Processing.” 2018 10th International Conference on
Electronics, Computers and Artificial Intelligence (ECAI) (2018): 1-4.

[19] Asif-Ur-Rahman, Md. et al. “Toward a Heterogeneous Mist, Fog, and
Cloud-Based Framework for the Internet of Healthcare Things.” IEEE
Internet of Things Journal 6, 2019, pp 4049-4062.

[20] Fei Tao, Meng Zhang and A.Y.C. Nee. "Chapter 8 - Digital Twin and
Cloud, Fog, Edge Computing" Academic Press, 2019, pp. 171-181

[21] Subhadeep Sarkar and Sudip Misra. Theoretical Modelling of Fog
Compu-ting: agreen Computing Paradigm to Support IoT
Applications.IET Networks, 5(2), 2016, pp. 23–29,

[22] Giang, N.K.; Blackstock, M.; Lea, R.; Leung, V.C. Developing IoT
applica-tions in the Fog: A distributed data flow approach. In

Bulletin of Informatics, Helwan University, Vol 2 Issue 1, January 2020

9

Proceedings of the 2015 IEEE 5th International Conference on the
Internet of Things(IOT), Seoul, Korea. 2015; pp. 155–162

[23] Y. Liu, J. E. Fieldsend, and G. Min, ‘‘A framework of fog computing:
Archi-tecture, challenges, and optimization,’’ IEEE Access, vol. 5,
2017, pp. 25445–25454.

[24] Barik, Rabindra Kumar et al. “Mist Data: Leveraging Mist Computing
for Secure and Scalable Architecture for Smart and Connected Health.”
2018, pp. 647 – 653.

[25] Soheil Anousha and Mahmoud Ahmadi, "An Improved MinMin Task
Scheduling Algorithm in Grid Computing," Springer-Verlag Berlin
Heidelberg, 2013, pp. 103-113.

[26] A. Thomasa, Krishnalal Ga, Jagathy Raj V Pb, “Credit Based
Scheduling Agorithm in Cloud Computing Environment”, ICICT 2014
pp. 913 – 920.

[27] Patel, Swachil J. and Upendra R. Bhoi. “Improved Priority Based Job
Sched-uling Algorithm in Cloud Computing Using Iterative Method.”
2014 Fourth Inter-national Conference on Advances in Computing and
Communications, 2014, pp. 199-202.

[28] Jagbeer Singh, Bichitrananda Patra, Satyendra Prasad Singh, "An
Algorithm to Reduce the Time Complexity of Earliest Deadline First
Scheduling Algorithm in Real-Time System" (IJACSA) International
Journal of Advanced Computer Science and Applications, February
2011, pp.31-37.

Hosam E Refaat: has graduated from the Faculty
of Science, Assuit university, Egypt, in 1998. In
October 2006, he finished his Master degree in the
field of distributed systems from the faculty of
Science, Cairo University, Egypt. Currently, he is
a lecturer in Faculty of Computers & Informatics,
Suez Canal University, Ismailia, Egypt. His
current research interests are Parallel Systems,
Cloud Computing, Edige Computing, and
Datamining.

