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Abstract— Software Defect Prediction (SDP) is a crucial and 

helpful method for upgrading software reliability and quality. It 

enables more effective project management by predicting 

potential release delays early on and facilitating cost-effective 

corrective actions to enhance software quality. This is achieved 

by forecasting which modules in a large software product are 

likely to have the highest number of defects in the next version. 

However, creating reliable defect forecasting models remains a 

challenging issue, leading to the presentation of numerous 

methods in literature. Typically, machine learning (ML) 

classifiers are employed, using manually designed attributes (like 

complexity measures) to identify problematic code. However, 

these attributes often fail to capture the full structural and 

semantic details of the software. Incorporating this information is 

crucial for the development of accurate defect prediction models. 

This study covers various defect prediction strategies and 

explores recent research on ML methodologies for SDP, aiming 

to bridge the gap between software semantics and defect 

forecasting attributes. By doing so, it seeks to produce more 

precise and accurate forecasting. 

Index Terms— Predicting Software Defect, Machine Learning 

(ML), Software Testing, Software Metrics, Algorithms of Deep 

learning (DL)  

I. INTRODUCTION 

ODAY, developers' focus has gradually evolved over the 

past few years towards software-based systems driven by 

the belief that software quality and reliability are the most 

crucial components of user performance. The increased 

computerization in recent years has resulted in the 

development of a wide range of software. However, steps 

must be taken to ensure that this software is error-free. 

Complex source code raises the likelihood of software 

exhibiting flaws, ultimately leading to software failure  [1]. 

Finding software bugs will be the focus of future study in the 

area of software engineering since it makes it easier for 

software engineers and developers to find bugs quickly and 

accurately [2]. 

     Early and accurate SDP is necessary for the scientifically 

based management of the software testing stage. Business 

typically uses SDP model development; these models aid in 

further defect prediction, testing, effort calculation, software 

dependability, software quality, assessment of hazards, etc., 

during the developing phase.      

     All software development organizations find that 

the Software Quality Assurance (SQA) is the most challenging 

and costly operation [3], as  the quality  assurance 

teams typically devote a considerable portion of their efforts 

and time to thoroughly reviewing the existing software instead 

of developing a new functionality. Tasks for SQA teams, such 

as software examination, help software developers 

locating possible issues and prioritize their efforts for testing. 

They have significant influences on the building of 

trustworthy, software with higher quality. In several research 

literatures focusing on SDP approaches, significant emphasis 

has been placed on testing and repairing software. The core 

concept of SDP revolves around constructing classifiers 

capable of predicting modules or sections of code at the 

highest risk of failure [4] [5]. The majority of these methods 

concentrate on creating characteristics (such as complexity 

measures) that are related to possibly defective code. SDP can 

be used to detect software modules, count the amount of 

faults in a particular module, and judges the effectiveness of 

the model designed to predict defects. The majority of SDP 

models were created with the goal of classifying defects [6]. 

The amount of time and resources needed to fix the defect in 

the software components can be better understood by 

forecasting the number of defects [7]. 

     SDP is carried out by taking into account several software 

metrics. Software metrics utilized in SDP [8] include 

requirements and change metrics, code churn, software size, 

lines of code, software difficulty, McCabe's [9], Halstead's 

metrics [10], etc. Software metrics encompass diverse types, 

including object-oriented, procedural, hybrid, and 

miscellaneous metrics. The SDP model is developed based on 

these metrics. 

     The SDP work has existed since the early 1900s [11]. 

ML algorithms have been used in the SDP field over the years. 

ML can identify components that pose a significant danger. 

potential failure (those are probably faulty) and then assign the 

O. E. Emam 1, M. A. Elsabagh2,*, M. G. Gafar2, T.Medhat3 

 

1Department of Information Systems, Faculty of Computers and Artificial Intelligence, Helwan University, Egypt. 
2Department of Machine Learning and Information Retrieval, Faculty of Artificial Intelligence, Kafrelsheikh University, Egypt. 

3Department of Electrical Engineering, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, Egypt. 

osama_emam@fci.helwan.edu.eg, Mahmoud_Mohsen@fci.kfs.edu.eg, mona_gafar@fci.kfs.edu.eg, tmedhatm@eng.kfs.edu.eg 

Users Review’s on Software Defect Prediction 

Utilizing Machine Learning methods   

T 



Informatics Bulletin, Helwan University, Vol 6 Issue 1, January 2024 

 

35 

highest priority to more risky test scenarios in order to create 

an effective testing plan with the least amount of efforts, time, 

and costs [12]. Establishing a mechanism for predicting 

software defects so that testing and maintenance costs can be 

reduced is the most important task in the testing stage of the 

Software Development Life Cycle (SDLC). It identifies the 

components that need extensive testing and are error-prone. 

Regression-based methods have been utilized for several 

decades to predict defective code; in recent years, both 

supervised and unsupervised ML techniques have been 

employed to predict defective code utilizing an existing set of 

training data that includes historical data from software 

repositories [1]. 

     Recent ML models are combined to create ensemble 

models [13] because conventional ML algorithms are not as 

effective . For cross-project [14] and within-project [15] 

prediction, SDP approaches can be utilized. When it comes to 

SDP, within-project methodology involves collecting data 

from a single project for both training and testing, compared to 

cross-project methodology involves gathering training 

and testing data from different projects. Classification and 

regression have been carried out using several types of ML 

techniques, such as Artificial Neural Networks (ANN), 

Support Vector Machines (SVM), and ensemble techniques.    

     Numerous variables have an impact on SDP models. These 

include noise, feature selection, software metrics, cost 

parameters, and over-fitting of the model. Also, data 

imbalance is one of the most critical problems with failure 

datasets [16], [17]. An unbalanced dataset is one that contains 

an unbalanced distribution of labels. A majority of one label of 

data exists, while a minority of another label of data does. 

Applying a technique to this dataset leads to skewed results 

and an unreliable assessment of the system. Numerous 

sampling strategies are employed to address this problem [12, 

10]. To develop better performance SDP models, these 

sampling methods are integrated with ML algorithms.[16], 

[18]. To tackle class imbalance problems, over-sampling and 

under-sampling techniques are frequently employed [17], [19]. 

One of two methods may be utilized to upgrade the reliability 

of the SDP method. Graphical and numerical metrics can be 

employed as performance assessment measures for SDP. 

Some graphical measurements include the cost curve, receiver 

operating characteristic curve, and area under the curve. The 

effectiveness of the model is predicted utilizing numerical 

performance indicators like accuracy, precision, F1-score, G-

measure, and others. The reliability of various models can be 

upgraded depending on the dataset, assessment measures, and 

usability. 

     Only the most recent SDP methods addressing performance 

issues, such as accuracy, are considered in this research. 

Researchers can analyze various algorithms and select the 

most suitable one based on factors such as software metrics 

and the dataset. 

II. BACKGROUND 

    This study briefly explains the SDP method and related 

researches. Researchers are working tirelessly these days to 

enhance the functionality of SDP models. The accuracy of the 

ML method depends on the quality of the historical data, 

which is divided into defective and non-defective components. 

The following subsection presents software defect prediction, 

SDP process, and summary of public datasets, respectively. 

1- Software Defect Prediction (SDP) 

     SDP is one of the most crucial tasks of the SDLC testing 

stage. It determined which components need more testing 

because they are prone to bugs. It is possible to use the test 

resources effectively without going overboard. Even while 

SDP is a great tool for testing, it's not always simple to 

identify the problematic components. Various issues hamper 

the seamless operation and application of defect prediction 

models. Predicting software flaws at an early stage enhances 

software quality while lowering costs and facilitating efficient 

software management, hence this was an area of interest for 

research [20].      

     Before the testing stage of the Software Development Life 

Cycle (SDLC), SDP serves as a method for identifying 

defective code segments [21]. It enables the satisfactory 

delivery of software development and the effective utilization 

of resources [22]. To build SDP models, numerous ML 

methods are employed, each impacting the performance of the 

SDP process. These elements are crucial for creating a 

detailed and organized model. Some of these key elements 

include: 

 Dataset problems. 

 Performance Evaluation. 

 ML algorithms. 

 Metrics of software 

 Feature selection. 

 Datasets. 

    Designers encounter various challenges while creating a 

model to identify defective software components. These 

elements can significantly affect the model's effectiveness and 

accuracy. Developers must consider all these factors when 

creating a model. Here are a few of them: 

 Data uncertainty. 

 Imbalanced data. 

 Model over-fitting. 

 Noisy. 

 Estimating cost parameters. 

     The following are the goals of SDP: (i) early -phases fault 

prediction; (ii) identifying critical components that need 

additional focus and resources; (iii) software quality 

enhancements; (iv) Cost savings; and (v) software efficiency 

[20]. 
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2- SDP process 

      

 

 

 

 

 

     Figure 1 depicts the standard process followed by SDP 

model [8], [21]: 

Stage 1, Gathering Data: For defect prediction, a variety of 

datasets are accessible. In this stage, either a dataset is 

developed or one from the publicly accessible datasets is used. 

The publicly accessible datasets are briefly described in the 

following Subsection. 

Stage 2, Preprocessing Data: The datasets used to predict 

defects may have issues with class imbalance, outliers, 

uncertainty, noise, and irrelevant data. This stage involves 

applying different sampling and noise reduction algorithms to 

the dataset. Applying ML methods to these datasets improves 

the model's performance.  

Stage 3, selecting the Model:  ML model is chosen depending 

on the dataset and the goal. One can choose among 

conventional approaches, edit an existing model of ML, or 

build a new one. 

Stage 4, during this stage, a dataset is used to develop the 

model. The model self-learned utilizing the trained 

data and the designated methodology. Testing and training 

data are separated from the datasets. 

Stage 5, evaluating the model performance: It is evaluated 

utilizing the data used for testing.  Many of software metrics 

like accuracy are utilized for evaluating the model's reliability 

and effectiveness in predicting defective software.  

Stage 6, Parameter adjustment: The model's parameters are 

changed in this stage to improve model’s accuracy 

and performance. Once the parameters have been adjusted, the 

model has been assessed again. 

Stage 7, Prediction: the model of SDP is evaluated and applied 

on real world problems and the outcomes are documented. 

3- Summary of Public datasets 

     The main problem with SDP in the past was the lack of 

publicly accessible datasets. It is difficult to evaluate the 

outcomes of various techniques in the absence of data. So, 

researchers established a few open repositories. Researchers 

discovered the PROMISE [23] store for the field of Software 

Engineering (SE) in 2005, motivated by the development of 

the ML repository established by California Irvine 

University [23]. In addition to this, numerous researchers have 

provided their personal publicly accessible datasets that are 

utilized in SDP [24]. The most well-known datasets for SDP 

that are publicly accessible are listed in the following table. 

Table 1 Different datasets of SDP field. 
Data                  Explanation   projects Features 
ReLink [25] Gathered by Zhang et.al [25] 

recovering link among 
defects and changes    

3 26 

NASA [26] This dataset was made 
available by the NASA  

13 20:40 

PROMISE[23] Open source SE  38 20 
SOFTLAB[27] Crated by a lab of software 

research in Turkey  
5 29 

ECLIPSE2 [28] Collected by Gong et.al [28] 2 17 
ECLIPSE1 [29] Collected by Premraj [29] 

from eclipse projects. 
3 31 

AEEEM [27] Gathered by Lanza [27] 5 61 

III. LITERATURE REVIEW 

     In the area of SE, SDP has become a widely-studied topic. 

SDP not only finds defective software components but also 

promotes to boost software by fixing the defect in the 

preliminary phases of software designing. Recent research by 

academics in the field of SDP is described in this section. 

Studies pertaining to ML algorithms utilized for SDP are 

included in Section 1, whereas studies pertaining to DL are 

covered in Section 2. 

     For the concern of imbalanced data, Turabieh et al. [30] 

introduced a model of SDP dependent on optimized Moth 

Flame paired with an Adapted Synthetic Sampling technique. 

The suggested technique enhances the functionality of many 

classifiers when used with the dataset from PROMISE 

repository. Linear Discriminant algorithm has the greatest 

value of AUC, and K-Nearest Neighbor (K-NN) has the 

fastest completion time. 

     M.A.Elsabagh et al. [15] propose that the spotted hyena 

innovative meta-heuristic technique was used to forecast 

defects. By identifying the most suitable rules throughout 

individuals, an objective function helped the spotted hyena 

accomplish the task of a classifier based on support and 

confidence using NASA datasets. 

     A classification model centered on the spotted hyena 

algorithm was utilized by Marwa et al. [14] to forecast faults 

in cross-projects. Confidence and Support were combined to 

find the best predictor of forecasting defects. This classifier of 

forecasting is also applied to new software that try to forecast 

flaws or other studies with limited data. 

     Three distinct generated oversampling techniques, 

Wasserstein GAN plus Penalty of Gradient, Vanilla GAN, 

and Conditional GAN have been presented by Chouhan et al. 

Fig. 1  General SDP Stages 



Informatics Bulletin, Helwan University, Vol 6 Issue 1, January 2024 

 

37 

[31]. The Eclipse, JIRA, and PROMISE datasets were used in 

the test. The outcomes of the baseline methods 

were significantly enhanced when these sampling techniques 

are combined with these methods within evaluations on 

defective set of data. 

     Santosh et al. [32] used Bayesian regression techniques for 

SDP in within-projects and cross-projects. Along with Linear 

and Non-linear Bayesian Regression, SVM, Random Forest 

(RF), and Linear Regression (LR), Synthetic Minority 

Oversampling and data sampling techniques are used. On a 

sample of 46 separate projects, Non-linear Bayesian 

regression techniques outperformed LR techniques. 

     By autonomously learning attributes that describe a module 

and utilizing them for SDP, Pham et al. [33] proposed a 

methodology for forecasting software flaws. Their prediction 

approach is based on an abstract syntax tree source code 

modeling and a tree-structured long short-term memory 

network for effective DL. 

     Kanwal et al. [34] presented a comparison of several 

ensemble methods used for SDP. Classifiers include Naive 

Bayes (NB), Logistic Regression (LR), Decision Tree (DT), 

K-NN, and Multinomial NB. On accessing a data from the 

PROMISE, the study is run. The metric employed to assess 

effectiveness is called the F-measure. The findings show that 

model averaging beats stacking and voting ensemble 

techniques. 

     A model for forecasting software flaws utilizing ML 

techniques was reported by Alnabhan et al. [35]. They 

employed three supervised ML techniques to accurately 

anticipate software bugs based on data: NB, DT and ANN. 

     A method that relies on feature reduction was presented by 

Jayanthi et.al [36]. They used an ANN as a predictor to 

forecast the flaws and principal component analysis (PCA) 

augmented by the calculation of maximum likelihood to 

eliminate mistakes in PCA. P. D et.al [37] employed KEEL to 

analyze and validate the most popular ML technique, 

including DT, NB, ANN, Particle Swarm Optimization (PSO), 

and linear classifier. Chen et al. [38]  utilized a methodology 

relied on the SVM as the main to handle the challenge of 

forecasting software errors. By using the grid search strategy, 

the model's parameters were optimized. 

     Chen et al. [39] observed that while traditional 

methodologies reduced unnecessary features using feature 

reduction techniques, some features remained significant and 

had an impact on performance when forecasting software 

problems. They applied the correlation method of maximal 

information to this problem, computing it from the chosen 

features and then clustering it subsequently. 

  

    Khan and M. Z. [40] compared well-known classifiers of 

composite ensembles with supervised learning using eight 

datasets. The findings demonstrated that bagging with an 

AdaBoost SVM produced excellent accuracy. Using  NASA 

datasets, Kumar et al. [41] suggested two algorithms for 

predicting flaws utilizing partial least squares and asymmetric 

kernel PCA. 

From the literature review of SDP, different issues and 

challenges may emerge: 

1- SDP accuracy: SDP model still suffers from the 

accuracy, so researchers are working tirelessly these 

days to enhance the functionality of SDP models. 

2- Feature selection: It might be difficult to determine 

which features or metrics of software are most likely 

to cause defects. There may not be agreement in the 

literature on the most important features, and it might 

be difficult to extract useful features from software 

data. 

3- Differences techniques: A variety of approaches may 

be presented in the literature, making it challenging 

to determine which is the most reliable or efficient. 

4- Uncertainty issues: uncertainties present in software 

features and predict defects with feasible accuracy. 

5- Insufficient data: SDP still have a challenge 

especially in new projects or in projects with no 

historical data. 

6- The core concept of SDP revolves around 

constructing classifiers capable of predicting modules 

or sections of code at the highest risk of failure 

IV.  DIFFERENT TYPES OF PREDICTION TECHNIQUES 

     The best-known approaches for predicting issues are 

ML techniques [42]–[44]. A number of algorithms, including 

transfer learning [45] [46], dictionary learning [4], multiple 

kernel ensemble learning [47] collaborative representation 

learning [48], and DL [49], [50], have been used to improve 

fault forecasts since new ML methods have been employed. 

We essentially classify the literature on associated fault 

prediction into the following three groups from the perspective 

of ML, as presented in Fig.2 [20]:  unsupervised, semi-

supervised, and supervised techniques. The utilization of all 

labeled data in a project to create fault forecasting model is 

known as supervised approaches. By using a project's 

enormous amount of data without labels and only a limited 

number of labeled training data, semi-supervised approaches 

build fault prediction models. Unsupervised techniques use the 

unlabeled data from a project to create fault predictive model 

instead of labeled data. 
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1- Supervised techniques 

     Zhang et al. [4] created a cost-sensitive discriminative 

dictionary learning (CDDL) strategy to forecast fault using a 

recently discovered dictionary learning methodology. To solve 

the issue of  imbalanced class , CDDL uses class knowledge 

from earlier data to enhance discriminant power and applies 

distinct misclassification costs by strengthening on type II 

misclassification ( in other words, faulty class is forecasted as 

non-faulty). 

     A collaborative representation classification (CRC)-based 

Fault Anticipating (CSFA) technique was also proposed at the 

same time by Ying et al. [48]. The recently developed CRC 

approach, which is used by CSFA, is based on the principle 

that all other samples can be combined linearly to represent a 

single sample. 

     Xia et al. [51] developed two-layer ensemble learning 

(TLEL) solution for JIT fault anticipating using  ensemble 

learning  and decision tree methods. TLEL first constructed a 

random forest approach by merging bagging and decision tree. 

Then, using the random under-sampling approach, TLEL 

learned a variety of distinct random forest structures and again 

combines them using stacking ensemble. 

2-  Semi-supervised techniques 

     Liu et al. [52] introduced a non-negative sparse-based 

SemiBoost (NSSB) technique for SDP using ensemble 

learning and semi-supervised training . Using semi-supervised 

training, NSSB utilizes both an extensive amount of unlabeled 

cases and a limited size of labeled cases. On the other hand, 

NSSB uses ensemble learning to combine a variety of 

insufficient classifiers in order to decrease the bias brought on 

by the non-faulty. 

     A non-negative sparse graph-based label propagation 

(NSGLP) technique for SDP was put out by Jing et al. [53] 

using sparse representation learning techniques and graph-

based semi-supervised training. To create a balanced data, 

NSGLP first made the cases that have been labeled as being 

non-defective. In order to better understand the link between 

the data, NSGLP then creates the weights utilizing the 

nonnegative sparse graph technique. Finally, using a label 

propagation strategy, NSGLP forecasts the unlabeled cases 

iteratively. 

3- Unsupervised  techniques 

     Enabling failure anticipating for new software or 

software lacking enough earlier data is a difficult topic. Kim 

and  Nam [54] provided two unsupervised approaches to 

overcome this challenge. The fundamental concept behind 

these two techniques is the use of metric magnitude values to 

label an unlabeled data. 

     By contrasting and analyzing the above SDP model based 

on ML algorithms, as illustrated in Table 2, we may make the 

following conclusions:  

i. For various forecasting contexts, fault 

forecasting approaches typically directly use or 

modify well-known ML techniques. 

ii.  To create classifiers, the majority of 

SDP strategies use supervised approaches. In 

general, supervised SDP approaches can increase 

the effectiveness of the anticipating, particularly 

the accuracy. 

iii.  Software code attributes provide the foundation 

for the majority of SDP techniques, which is 

made possible by the fact that they are simpler to 

gather than process metrics. 
Table 2 Comparative analysis of SDP utilizing ML 

Type Name Methods Dataset 
Unsupervised Kim and Nam [54] 

 
Zheng et al.[55] 

Feature selection, 
cluster 

Spectral clustering 

Relink 
 

NASA 
Semi-

supervised 
Jing et al. [53] 

 
 

Zhang et al.  [52] 

label propagation 
,sparse graph & 
representation 

Sparse 
representation, graph 
learning, SemiBoost. 

NASA 
 
 

NASA 

Supervised Xia et al. [51] 
 
 

Baik  et al. [56] 
 
 

Penta  et al. [57] 
 
 

Shang et al. [46] 
 

Tan et al. [45] 
 

Tan et al.[49] 
Jing  et al. [47] 

 
Ying  et al. [48] 

 
 Zhang et al. [4] 

random forest, 
bagging, decision 

tree,  
boosting, cost- 

transfer, sensitive 
learning 

multi-objective 
optimization, Genetic 

Algorithm (GA) 
AdaBoost, transfer 

learning, GA 
Boosting, transfer 

learning 
DL 

Boosting, multiple 
kernel ensemble 

collaborative 
representation 
cost-sensitive, 

dictionary learning,  

JIT 
 
 

PROMISE 
 
 

PROMISE 
 
 

PROMISE 
 

PROMISE 
 

PROMISE 
NASA 

 
NASA 

 
NASA 

Fig.2 ML techniques in SDP. 
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V. EVALUATION METRICS 

     Numerous evaluation metrics have been widely utilized in 

[6], [24], [58]–[61] to assess SDP capability. The study of data 

in a confusion matrix (CM) [62] is typically the foundation for 

measuring SDP performance. This CM compares the different 

fault types' expected classifications to their real classifications. 

The CM and four SDP results are presented in Table 3. Here, 

true negative (TN), false positive (FP), false negative (FN), 

and true positive (TP) are the number of non-faulty samples 

that are expected as non-faulty, the number of non-faulty 

samples that are expected as faulty, the number of faulty 

samples that are expected as non-faulty, and the number of 

faulty samples that are expected as faulty, respectively. 

Table 3 General CM. 

 Expected faulty    Expected non-faulty  

 Real faulty TP                                 FN        

Real Non-faulty FP                                 TN        

 

     The CM can define the following performance assessment 

metrics, commonly used in SDP research. Table 4 lists the 

most popular performance assessment metrics for SDP. 

Table 3 Various performance assessment metrics 

Metric Description 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

FP rate 𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

G-measure 2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ (1 − 𝐹𝑃 𝑟𝑎𝑡𝑒)

𝑟𝑒𝑐𝑎𝑙𝑙 + (1 − 𝐹𝑃 𝑟𝑎𝑡𝑒)
 

F-measure 2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

VI. CONCLUSION 

     As higher accuracy software systems are developed, 

(SQA) has grown to be one of the most crucial and costly 

phases.  The complexity of Software keeps rising as software 

system take on more significance in our daily lives. Due to the 

growing complexity, quality assurance is extremely 

challenging to implement. fault -prone components can be 

identified by SDP models, allowing SQA teams to more 

efficiently allocate their limited code examination 

and testing  resources by concentrating their efforts on these 

components. Recent years have seen a rapid emergence of 

new SDP approaches, issues, and applications. This 

paper makes an effort to comprehensively outline all common 

papers on SDP published lately. Depending on the findings of 

this study, this survey will assist academics and developers in 

more easily and effectively understanding earlier SDP studies 

from the perspectives of modeling methodologies, software 

metrics datasets, and evaluation metrics. 
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