
Informatics Bulletin, Faculty of Computers and Artificial Intelligence, Helwan University

Published Online Vol 6 Issue 1, January 2024

(https://fcihib.journals.ekb.eg)

Abstract— Software Defect Prediction (SDP) is a crucial and

helpful method for upgrading software reliability and quality. It

enables more effective project management by predicting

potential release delays early on and facilitating cost-effective

corrective actions to enhance software quality. This is achieved

by forecasting which modules in a large software product are

likely to have the highest number of defects in the next version.

However, creating reliable defect forecasting models remains a

challenging issue, leading to the presentation of numerous

methods in literature. Typically, machine learning (ML)

classifiers are employed, using manually designed attributes (like

complexity measures) to identify problematic code. However,

these attributes often fail to capture the full structural and

semantic details of the software. Incorporating this information is

crucial for the development of accurate defect prediction models.

This study covers various defect prediction strategies and

explores recent research on ML methodologies for SDP, aiming

to bridge the gap between software semantics and defect

forecasting attributes. By doing so, it seeks to produce more

precise and accurate forecasting.

Index Terms— Predicting Software Defect, Machine Learning

(ML), Software Testing, Software Metrics, Algorithms of Deep

learning (DL)

I. INTRODUCTION

ODAY, developers' focus has gradually evolved over the

past few years towards software-based systems driven by

the belief that software quality and reliability are the most

crucial components of user performance. The increased

computerization in recent years has resulted in the

development of a wide range of software. However, steps

must be taken to ensure that this software is error-free.

Complex source code raises the likelihood of software

exhibiting flaws, ultimately leading to software failure [1].

Finding software bugs will be the focus of future study in the

area of software engineering since it makes it easier for

software engineers and developers to find bugs quickly and

accurately [2].

 Early and accurate SDP is necessary for the scientifically

based management of the software testing stage. Business

typically uses SDP model development; these models aid in

further defect prediction, testing, effort calculation, software

dependability, software quality, assessment of hazards, etc.,

during the developing phase.

 All software development organizations find that

the Software Quality Assurance (SQA) is the most challenging

and costly operation [3], as the quality assurance

teams typically devote a considerable portion of their efforts

and time to thoroughly reviewing the existing software instead

of developing a new functionality. Tasks for SQA teams, such

as software examination, help software developers

locating possible issues and prioritize their efforts for testing.

They have significant influences on the building of

trustworthy, software with higher quality. In several research

literatures focusing on SDP approaches, significant emphasis

has been placed on testing and repairing software. The core

concept of SDP revolves around constructing classifiers

capable of predicting modules or sections of code at the

highest risk of failure [4] [5]. The majority of these methods

concentrate on creating characteristics (such as complexity

measures) that are related to possibly defective code. SDP can

be used to detect software modules, count the amount of

faults in a particular module, and judges the effectiveness of

the model designed to predict defects. The majority of SDP

models were created with the goal of classifying defects [6].

The amount of time and resources needed to fix the defect in

the software components can be better understood by

forecasting the number of defects [7].

 SDP is carried out by taking into account several software

metrics. Software metrics utilized in SDP [8] include

requirements and change metrics, code churn, software size,

lines of code, software difficulty, McCabe's [9], Halstead's

metrics [10], etc. Software metrics encompass diverse types,

including object-oriented, procedural, hybrid, and

miscellaneous metrics. The SDP model is developed based on

these metrics.

 The SDP work has existed since the early 1900s [11].

ML algorithms have been used in the SDP field over the years.

ML can identify components that pose a significant danger.

potential failure (those are probably faulty) and then assign the

O. E. Emam 1, M. A. Elsabagh2,*, M. G. Gafar2, T.Medhat3

1Department of Information Systems, Faculty of Computers and Artificial Intelligence, Helwan University, Egypt.
2Department of Machine Learning and Information Retrieval, Faculty of Artificial Intelligence, Kafrelsheikh University, Egypt.

3Department of Electrical Engineering, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, Egypt.

osama_emam@fci.helwan.edu.eg, Mahmoud_Mohsen@fci.kfs.edu.eg, mona_gafar@fci.kfs.edu.eg, tmedhatm@eng.kfs.edu.eg

Users Review’s on Software Defect Prediction

Utilizing Machine Learning methods

T

Informatics Bulletin, Helwan University, Vol 6 Issue 1, January 2024

35

highest priority to more risky test scenarios in order to create

an effective testing plan with the least amount of efforts, time,

and costs [12]. Establishing a mechanism for predicting

software defects so that testing and maintenance costs can be

reduced is the most important task in the testing stage of the

Software Development Life Cycle (SDLC). It identifies the

components that need extensive testing and are error-prone.

Regression-based methods have been utilized for several

decades to predict defective code; in recent years, both

supervised and unsupervised ML techniques have been

employed to predict defective code utilizing an existing set of

training data that includes historical data from software

repositories [1].

 Recent ML models are combined to create ensemble

models [13] because conventional ML algorithms are not as

effective . For cross-project [14] and within-project [15]

prediction, SDP approaches can be utilized. When it comes to

SDP, within-project methodology involves collecting data

from a single project for both training and testing, compared to

cross-project methodology involves gathering training

and testing data from different projects. Classification and

regression have been carried out using several types of ML

techniques, such as Artificial Neural Networks (ANN),

Support Vector Machines (SVM), and ensemble techniques.

 Numerous variables have an impact on SDP models. These

include noise, feature selection, software metrics, cost

parameters, and over-fitting of the model. Also, data

imbalance is one of the most critical problems with failure

datasets [16], [17]. An unbalanced dataset is one that contains

an unbalanced distribution of labels. A majority of one label of

data exists, while a minority of another label of data does.

Applying a technique to this dataset leads to skewed results

and an unreliable assessment of the system. Numerous

sampling strategies are employed to address this problem [12,

10]. To develop better performance SDP models, these

sampling methods are integrated with ML algorithms.[16],

[18]. To tackle class imbalance problems, over-sampling and

under-sampling techniques are frequently employed [17], [19].

One of two methods may be utilized to upgrade the reliability

of the SDP method. Graphical and numerical metrics can be

employed as performance assessment measures for SDP.

Some graphical measurements include the cost curve, receiver

operating characteristic curve, and area under the curve. The

effectiveness of the model is predicted utilizing numerical

performance indicators like accuracy, precision, F1-score, G-

measure, and others. The reliability of various models can be

upgraded depending on the dataset, assessment measures, and

usability.

 Only the most recent SDP methods addressing performance

issues, such as accuracy, are considered in this research.

Researchers can analyze various algorithms and select the

most suitable one based on factors such as software metrics

and the dataset.

II. BACKGROUND

 This study briefly explains the SDP method and related

researches. Researchers are working tirelessly these days to

enhance the functionality of SDP models. The accuracy of the

ML method depends on the quality of the historical data,

which is divided into defective and non-defective components.

The following subsection presents software defect prediction,

SDP process, and summary of public datasets, respectively.

1- Software Defect Prediction (SDP)

 SDP is one of the most crucial tasks of the SDLC testing

stage. It determined which components need more testing

because they are prone to bugs. It is possible to use the test

resources effectively without going overboard. Even while

SDP is a great tool for testing, it's not always simple to

identify the problematic components. Various issues hamper

the seamless operation and application of defect prediction

models. Predicting software flaws at an early stage enhances

software quality while lowering costs and facilitating efficient

software management, hence this was an area of interest for

research [20].

 Before the testing stage of the Software Development Life

Cycle (SDLC), SDP serves as a method for identifying

defective code segments [21]. It enables the satisfactory

delivery of software development and the effective utilization

of resources [22]. To build SDP models, numerous ML

methods are employed, each impacting the performance of the

SDP process. These elements are crucial for creating a

detailed and organized model. Some of these key elements

include:

 Dataset problems.

 Performance Evaluation.

 ML algorithms.

 Metrics of software

 Feature selection.

 Datasets.

 Designers encounter various challenges while creating a

model to identify defective software components. These

elements can significantly affect the model's effectiveness and

accuracy. Developers must consider all these factors when

creating a model. Here are a few of them:

 Data uncertainty.

 Imbalanced data.

 Model over-fitting.

 Noisy.

 Estimating cost parameters.

 The following are the goals of SDP: (i) early -phases fault

prediction; (ii) identifying critical components that need

additional focus and resources; (iii) software quality

enhancements; (iv) Cost savings; and (v) software efficiency

[20].

Informatics Bulletin, Helwan University, Vol 6 Issue 1, January 2024

36

2- SDP process

 Figure 1 depicts the standard process followed by SDP

model [8], [21]:

Stage 1, Gathering Data: For defect prediction, a variety of

datasets are accessible. In this stage, either a dataset is

developed or one from the publicly accessible datasets is used.

The publicly accessible datasets are briefly described in the

following Subsection.

Stage 2, Preprocessing Data: The datasets used to predict

defects may have issues with class imbalance, outliers,

uncertainty, noise, and irrelevant data. This stage involves

applying different sampling and noise reduction algorithms to

the dataset. Applying ML methods to these datasets improves

the model's performance.

Stage 3, selecting the Model: ML model is chosen depending

on the dataset and the goal. One can choose among

conventional approaches, edit an existing model of ML, or

build a new one.

Stage 4, during this stage, a dataset is used to develop the

model. The model self-learned utilizing the trained

data and the designated methodology. Testing and training

data are separated from the datasets.

Stage 5, evaluating the model performance: It is evaluated

utilizing the data used for testing. Many of software metrics

like accuracy are utilized for evaluating the model's reliability

and effectiveness in predicting defective software.

Stage 6, Parameter adjustment: The model's parameters are

changed in this stage to improve model’s accuracy

and performance. Once the parameters have been adjusted, the

model has been assessed again.

Stage 7, Prediction: the model of SDP is evaluated and applied

on real world problems and the outcomes are documented.

3- Summary of Public datasets

 The main problem with SDP in the past was the lack of

publicly accessible datasets. It is difficult to evaluate the

outcomes of various techniques in the absence of data. So,

researchers established a few open repositories. Researchers

discovered the PROMISE [23] store for the field of Software

Engineering (SE) in 2005, motivated by the development of

the ML repository established by California Irvine

University [23]. In addition to this, numerous researchers have

provided their personal publicly accessible datasets that are

utilized in SDP [24]. The most well-known datasets for SDP

that are publicly accessible are listed in the following table.

Table 1 Different datasets of SDP field.
Data Explanation projects Features
ReLink [25] Gathered by Zhang et.al [25]

recovering link among
defects and changes

3 26

NASA [26] This dataset was made
available by the NASA

13 20:40

PROMISE[23] Open source SE 38 20
SOFTLAB[27] Crated by a lab of software

research in Turkey
5 29

ECLIPSE2 [28] Collected by Gong et.al [28] 2 17
ECLIPSE1 [29] Collected by Premraj [29]

from eclipse projects.
3 31

AEEEM [27] Gathered by Lanza [27] 5 61

III. LITERATURE REVIEW

 In the area of SE, SDP has become a widely-studied topic.

SDP not only finds defective software components but also

promotes to boost software by fixing the defect in the

preliminary phases of software designing. Recent research by

academics in the field of SDP is described in this section.

Studies pertaining to ML algorithms utilized for SDP are

included in Section 1, whereas studies pertaining to DL are

covered in Section 2.

 For the concern of imbalanced data, Turabieh et al. [30]

introduced a model of SDP dependent on optimized Moth

Flame paired with an Adapted Synthetic Sampling technique.

The suggested technique enhances the functionality of many

classifiers when used with the dataset from PROMISE

repository. Linear Discriminant algorithm has the greatest

value of AUC, and K-Nearest Neighbor (K-NN) has the

fastest completion time.

 M.A.Elsabagh et al. [15] propose that the spotted hyena

innovative meta-heuristic technique was used to forecast

defects. By identifying the most suitable rules throughout

individuals, an objective function helped the spotted hyena

accomplish the task of a classifier based on support and

confidence using NASA datasets.

 A classification model centered on the spotted hyena

algorithm was utilized by Marwa et al. [14] to forecast faults

in cross-projects. Confidence and Support were combined to

find the best predictor of forecasting defects. This classifier of

forecasting is also applied to new software that try to forecast

flaws or other studies with limited data.

 Three distinct generated oversampling techniques,

Wasserstein GAN plus Penalty of Gradient, Vanilla GAN,

and Conditional GAN have been presented by Chouhan et al.

Fig. 1 General SDP Stages

Informatics Bulletin, Helwan University, Vol 6 Issue 1, January 2024

37

[31]. The Eclipse, JIRA, and PROMISE datasets were used in

the test. The outcomes of the baseline methods

were significantly enhanced when these sampling techniques

are combined with these methods within evaluations on

defective set of data.

 Santosh et al. [32] used Bayesian regression techniques for

SDP in within-projects and cross-projects. Along with Linear

and Non-linear Bayesian Regression, SVM, Random Forest

(RF), and Linear Regression (LR), Synthetic Minority

Oversampling and data sampling techniques are used. On a

sample of 46 separate projects, Non-linear Bayesian

regression techniques outperformed LR techniques.

 By autonomously learning attributes that describe a module

and utilizing them for SDP, Pham et al. [33] proposed a

methodology for forecasting software flaws. Their prediction

approach is based on an abstract syntax tree source code

modeling and a tree-structured long short-term memory

network for effective DL.

 Kanwal et al. [34] presented a comparison of several

ensemble methods used for SDP. Classifiers include Naive

Bayes (NB), Logistic Regression (LR), Decision Tree (DT),

K-NN, and Multinomial NB. On accessing a data from the

PROMISE, the study is run. The metric employed to assess

effectiveness is called the F-measure. The findings show that

model averaging beats stacking and voting ensemble

techniques.

 A model for forecasting software flaws utilizing ML

techniques was reported by Alnabhan et al. [35]. They

employed three supervised ML techniques to accurately

anticipate software bugs based on data: NB, DT and ANN.

 A method that relies on feature reduction was presented by

Jayanthi et.al [36]. They used an ANN as a predictor to

forecast the flaws and principal component analysis (PCA)

augmented by the calculation of maximum likelihood to

eliminate mistakes in PCA. P. D et.al [37] employed KEEL to

analyze and validate the most popular ML technique,

including DT, NB, ANN, Particle Swarm Optimization (PSO),

and linear classifier. Chen et al. [38] utilized a methodology

relied on the SVM as the main to handle the challenge of

forecasting software errors. By using the grid search strategy,

the model's parameters were optimized.

 Chen et al. [39] observed that while traditional

methodologies reduced unnecessary features using feature

reduction techniques, some features remained significant and

had an impact on performance when forecasting software

problems. They applied the correlation method of maximal

information to this problem, computing it from the chosen

features and then clustering it subsequently.

 Khan and M. Z. [40] compared well-known classifiers of

composite ensembles with supervised learning using eight

datasets. The findings demonstrated that bagging with an

AdaBoost SVM produced excellent accuracy. Using NASA

datasets, Kumar et al. [41] suggested two algorithms for

predicting flaws utilizing partial least squares and asymmetric

kernel PCA.

From the literature review of SDP, different issues and

challenges may emerge:

1- SDP accuracy: SDP model still suffers from the

accuracy, so researchers are working tirelessly these

days to enhance the functionality of SDP models.

2- Feature selection: It might be difficult to determine

which features or metrics of software are most likely

to cause defects. There may not be agreement in the

literature on the most important features, and it might

be difficult to extract useful features from software

data.

3- Differences techniques: A variety of approaches may

be presented in the literature, making it challenging

to determine which is the most reliable or efficient.

4- Uncertainty issues: uncertainties present in software

features and predict defects with feasible accuracy.

5- Insufficient data: SDP still have a challenge

especially in new projects or in projects with no

historical data.

6- The core concept of SDP revolves around

constructing classifiers capable of predicting modules

or sections of code at the highest risk of failure

IV. DIFFERENT TYPES OF PREDICTION TECHNIQUES

 The best-known approaches for predicting issues are

ML techniques [42]–[44]. A number of algorithms, including

transfer learning [45] [46], dictionary learning [4], multiple

kernel ensemble learning [47] collaborative representation

learning [48], and DL [49], [50], have been used to improve

fault forecasts since new ML methods have been employed.

We essentially classify the literature on associated fault

prediction into the following three groups from the perspective

of ML, as presented in Fig.2 [20]: unsupervised, semi-

supervised, and supervised techniques. The utilization of all

labeled data in a project to create fault forecasting model is

known as supervised approaches. By using a project's

enormous amount of data without labels and only a limited

number of labeled training data, semi-supervised approaches

build fault prediction models. Unsupervised techniques use the

unlabeled data from a project to create fault predictive model

instead of labeled data.

Informatics Bulletin, Helwan University, Vol 6 Issue 1, January 2024

38

1- Supervised techniques

 Zhang et al. [4] created a cost-sensitive discriminative

dictionary learning (CDDL) strategy to forecast fault using a

recently discovered dictionary learning methodology. To solve

the issue of imbalanced class , CDDL uses class knowledge

from earlier data to enhance discriminant power and applies

distinct misclassification costs by strengthening on type II

misclassification (in other words, faulty class is forecasted as

non-faulty).

 A collaborative representation classification (CRC)-based

Fault Anticipating (CSFA) technique was also proposed at the

same time by Ying et al. [48]. The recently developed CRC

approach, which is used by CSFA, is based on the principle

that all other samples can be combined linearly to represent a

single sample.

 Xia et al. [51] developed two-layer ensemble learning

(TLEL) solution for JIT fault anticipating using ensemble

learning and decision tree methods. TLEL first constructed a

random forest approach by merging bagging and decision tree.

Then, using the random under-sampling approach, TLEL

learned a variety of distinct random forest structures and again

combines them using stacking ensemble.

2- Semi-supervised techniques

 Liu et al. [52] introduced a non-negative sparse-based

SemiBoost (NSSB) technique for SDP using ensemble

learning and semi-supervised training . Using semi-supervised

training, NSSB utilizes both an extensive amount of unlabeled

cases and a limited size of labeled cases. On the other hand,

NSSB uses ensemble learning to combine a variety of

insufficient classifiers in order to decrease the bias brought on

by the non-faulty.

 A non-negative sparse graph-based label propagation

(NSGLP) technique for SDP was put out by Jing et al. [53]

using sparse representation learning techniques and graph-

based semi-supervised training. To create a balanced data,

NSGLP first made the cases that have been labeled as being

non-defective. In order to better understand the link between

the data, NSGLP then creates the weights utilizing the

nonnegative sparse graph technique. Finally, using a label

propagation strategy, NSGLP forecasts the unlabeled cases

iteratively.

3- Unsupervised techniques

 Enabling failure anticipating for new software or

software lacking enough earlier data is a difficult topic. Kim

and Nam [54] provided two unsupervised approaches to

overcome this challenge. The fundamental concept behind

these two techniques is the use of metric magnitude values to

label an unlabeled data.

 By contrasting and analyzing the above SDP model based

on ML algorithms, as illustrated in Table 2, we may make the

following conclusions:

i. For various forecasting contexts, fault

forecasting approaches typically directly use or

modify well-known ML techniques.

ii. To create classifiers, the majority of

SDP strategies use supervised approaches. In

general, supervised SDP approaches can increase

the effectiveness of the anticipating, particularly

the accuracy.

iii. Software code attributes provide the foundation

for the majority of SDP techniques, which is

made possible by the fact that they are simpler to

gather than process metrics.
Table 2 Comparative analysis of SDP utilizing ML

Type Name Methods Dataset
Unsupervised Kim and Nam [54]

Zheng et al.[55]

Feature selection,
cluster

Spectral clustering

Relink

NASA
Semi-

supervised
Jing et al. [53]

Zhang et al. [52]

label propagation
,sparse graph &
representation

Sparse
representation, graph
learning, SemiBoost.

NASA

NASA

Supervised Xia et al. [51]

Baik et al. [56]

Penta et al. [57]

Shang et al. [46]

Tan et al. [45]

Tan et al.[49]
Jing et al. [47]

Ying et al. [48]

 Zhang et al. [4]

random forest,
bagging, decision

tree,
boosting, cost-

transfer, sensitive
learning

multi-objective
optimization, Genetic

Algorithm (GA)
AdaBoost, transfer

learning, GA
Boosting, transfer

learning
DL

Boosting, multiple
kernel ensemble

collaborative
representation
cost-sensitive,

dictionary learning,

JIT

PROMISE

PROMISE

PROMISE

PROMISE

PROMISE
NASA

NASA

NASA

Fig.2 ML techniques in SDP.

Informatics Bulletin, Helwan University, Vol 6 Issue 1, January 2024

39

V. EVALUATION METRICS

 Numerous evaluation metrics have been widely utilized in

[6], [24], [58]–[61] to assess SDP capability. The study of data

in a confusion matrix (CM) [62] is typically the foundation for

measuring SDP performance. This CM compares the different

fault types' expected classifications to their real classifications.

The CM and four SDP results are presented in Table 3. Here,

true negative (TN), false positive (FP), false negative (FN),

and true positive (TP) are the number of non-faulty samples

that are expected as non-faulty, the number of non-faulty

samples that are expected as faulty, the number of faulty

samples that are expected as non-faulty, and the number of

faulty samples that are expected as faulty, respectively.

Table 3 General CM.

 Expected faulty Expected non-faulty

 Real faulty TP FN

Real Non-faulty FP TN

 The CM can define the following performance assessment

metrics, commonly used in SDP research. Table 4 lists the

most popular performance assessment metrics for SDP.

Table 3 Various performance assessment metrics

Metric Description

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall 𝑇𝑃

𝑇𝑃 + 𝐹𝑁

FP rate 𝐹𝑃

𝐹𝑃 + 𝑇𝑁

G-measure 2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ (1 − 𝐹𝑃 𝑟𝑎𝑡𝑒)

𝑟𝑒𝑐𝑎𝑙𝑙 + (1 − 𝐹𝑃 𝑟𝑎𝑡𝑒)

F-measure 2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

VI. CONCLUSION

 As higher accuracy software systems are developed,

(SQA) has grown to be one of the most crucial and costly

phases. The complexity of Software keeps rising as software

system take on more significance in our daily lives. Due to the

growing complexity, quality assurance is extremely

challenging to implement. fault -prone components can be

identified by SDP models, allowing SQA teams to more

efficiently allocate their limited code examination

and testing resources by concentrating their efforts on these

components. Recent years have seen a rapid emergence of

new SDP approaches, issues, and applications. This

paper makes an effort to comprehensively outline all common

papers on SDP published lately. Depending on the findings of

this study, this survey will assist academics and developers in

more easily and effectively understanding earlier SDP studies

from the perspectives of modeling methodologies, software

metrics datasets, and evaluation metrics.

REFERENCES

[1] T. Sharma, A. Jatain, S. Bhaskar, and K. Pabreja,

“Literature Review: A Comparative Study of Software

Defect Prediction Techniques,” in Proceedings of 3rd

International Conference on Artificial Intelligence:

Advances and Applications: ICAIAA 2022, 2023, pp.

13–29.

[2] H. K. Dam et al., “Lessons learned from using a deep

tree-based model for software defect prediction in

practice,” in 2019 IEEE/ACM 16th International

Conference on Mining Software Repositories (MSR),

2019, pp. 46–57.

[3] R. Rana, M. Staron, J. Hansson, and M. Nilsson,

“Defect prediction over software life cycle in

automotive domain state of the art and road map for

future,” in 2014 9th International Conference on

Software Engineering and Applications (ICSOFT-EA),

2014, pp. 377–382.

[4] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J.

Liu, “Dictionary learning based software defect

prediction,” in Proceedings of the 36th international

conference on software engineering, 2014, pp. 414–

423.

[5] S. A. Sherer, “Software fault prediction,” J. Syst.

Softw., vol. 29, no. 2, pp. 97–105, 1995.

[6] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch,

“Benchmarking classification models for software

defect prediction: A proposed framework and novel

findings,” IEEE Trans. Softw. Eng., vol. 34, no. 4, pp.

485–496, 2008.

[7] S. S. Rathore and S. Kumar, “An empirical study of

some software fault prediction techniques for the

number of faults prediction,” Soft Comput., vol. 21,

pp. 7417–7434, 2017.

[8] S. S. Rathore and S. Kumar, “A study on software

fault prediction techniques,” Artif. Intell. Rev., vol. 51,

pp. 255–327, 2019.

[9] T. J. McCabe, “A complexity measure,” IEEE Trans.

Softw. Eng., no. 4, pp. 308–320, 1976.

[10] M. H. Halstead, Elements of Software Science

(Operating and programming systems series). Elsevier

Science Inc., 1977.

[11] C. Catal, “Software fault prediction: A literature

review and current trends,” Expert Syst. Appl., vol. 38,

no. 4, pp. 4626–4636, 2011.

[12] C. Jin, “Software defect prediction model based on

distance metric learning,” Soft Comput., vol. 25, pp.

447–461, 2021.

[13] L. Rokach, “Ensemble methods for classifiers,” Data

Min. Knowl. Discov. Handb., pp. 957–980, 2005.

[14] M. A. Elsabagh, M. S. Farhan, and M. G. Gafar,

“Cross-projects software defect prediction using

spotted hyena optimizer algorithm,” SN Appl. Sci., vol.

2, no. 4, p. 538, 2020, doi: 10.1007/s42452-020-2320-

4.

[15] M. A. Elsabagh, M. S. Farhan, and M. G. Gafar,

“Meta‐heuristic optimization algorithm for predicting

software defects,” Expert Syst., vol. 38, no. 8, p.

e12768, 2021.

[16] N. Japkowicz and S. Stephen, “The class imbalance

problem: A systematic study,” Intell. data Anal., vol.

6, no. 5, pp. 429–449, 2002.

[17] C. Tantithamthavorn, A. E. Hassan, and K.

Informatics Bulletin, Helwan University, Vol 6 Issue 1, January 2024

40

Matsumoto, “The impact of class rebalancing

techniques on the performance and interpretation of

defect prediction models,” IEEE Trans. Softw. Eng.,

vol. 46, no. 11, pp. 1200–1219, 2018.

[18] S. M. Abd Elrahman and A. Abraham, “A review of

class imbalance problem,” J. Netw. Innov. Comput.,

vol. 1, no. 2013, pp. 332–340, 2013.

[19] Q. Song, Y. Guo, and M. Shepperd, “A

comprehensive investigation of the role of imbalanced

learning for software defect prediction,” IEEE Trans.

Softw. Eng., vol. 45, no. 12, pp. 1253–1269, 2018.

[20] M. Prashanthi and M. Chandra Mohan, “Survey on

Innovative Techniques to Predict Software Defects,”

in Innovations in Computer Science and Engineering:

Proceedings of the Ninth ICICSE, 2021, Springer,

2022, pp. 697–707.

[21] S. Pandey and K. Kumar, “Software Fault Prediction

for Imbalanced Data: A Survey on Recent

Developments,” Procedia Comput. Sci., vol. 218, pp.

1815–1824, 2023.

[22] S. K. Pandey, R. B. Mishra, and A. K. Tripathi,

“Machine learning based methods for software fault

prediction: A survey,” Expert Syst. Appl., vol. 172, p.

114595, 2021.

[23] “PROMISE Software Engineering Repository.”

[Online]. Available:

http://promise.site.uottawa.ca/SERepository/

[24] Z. Li, X.-Y. Jing, and X. Zhu, “Progress on

approaches to software defect prediction,” IET Softw.,

vol. 12, no. 3, pp. 161–175, 2018.

[25] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink:

recovering links between bugs and changes,” in

Proceedings of the 19th ACM SIGSOFT symposium

and the 13th European conference on Foundations of

software engineering, 2011, pp. 15–25.

[26] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data

quality: Some comments on the nasa software defect

datasets,” IEEE Trans. Softw. Eng., vol. 39, no. 9, pp.

1208–1215, 2013.

[27] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating

defect prediction approaches: a benchmark and an

extensive comparison,” Empir. Softw. Eng., vol. 17,

pp. 531–577, 2012.

[28] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with

noise in defect prediction,” in Proceedings of the 33rd

International Conference on Software Engineering,

2011, pp. 481–490.

[29] T. Zimmermann, R. Premraj, and A. Zeller,

“Predicting defects for eclipse,” in Third International

Workshop on Predictor Models in Software

Engineering (PROMISE’07: ICSE Workshops 2007),

2007, p. 9.

[30] I. Tumar, Y. Hassouneh, H. Turabieh, and T. Thaher,

“Enhanced binary moth flame optimization as a

feature selection algorithm to predict software fault

prediction,” IEEE Access, vol. 8, pp. 8041–8055,

2020.

[31] S. S. Rathore, S. S. Chouhan, D. K. Jain, and A. G.

Vachhani, “Generative Oversampling Methods for

Handling Imbalanced Data in Software Fault

Prediction,” IEEE Trans. Reliab., vol. 71, no. 2, pp.

747–762, 2022.

[32] R. Singh and S. S. Rathore, “Linear and non-linear

bayesian regression methods for software fault

prediction,” Int. J. Syst. Assur. Eng. Manag., vol. 13,

no. 4, pp. 1864–1884, 2022.

[33] H. K. Dam et al., “A deep tree-based model for

software defect prediction,” arXiv Prepr.

arXiv1802.00921, 2018.

[34] E. Elahi, S. Kanwal, and A. N. Asif, “A new ensemble

approach for software fault prediction,” in 2020 17th

international Bhurban conference on applied sciences

and technology (IBCAST), 2020, pp. 407–412.

[35] A. Hammouri, M. Hammad, M. Alnabhan, and F.

Alsarayrah, “Software bug prediction using machine

learning approach,” IJACSA) Int. J. Adv. Comput. Sci.

Appl., vol. 9, no. 2, 2018.

[36] R. Jayanthi and L. Florence, “Software defect

prediction techniques using metrics based on neural

network classifier,” Cluster Comput., vol. 22, no. 1,

pp. 77–88, 2019.

[37] P. D. Singh and A. Chug, “Software defect prediction

analysis using machine learning algorithms,” in 2017

7th International Conference on Cloud Computing,

Data Science & Engineering-Confluence, 2017, pp.

775–781.

[38] H. Wei, C. Hu, S. Chen, Y. Xue, and Q. Zhang,

“Establishing a software defect prediction model via

effective dimension reduction,” Inf. Sci. (Ny)., vol.

477, pp. 399–409, 2019.

[39] C. Shan, B. Chen, C. Hu, J. Xue, and N. Li, “Software

defect prediction model based on LLE and SVM,”

2014.

[40] M. Z. Khan, “Hybrid Ensemble Learning Technique

for Software Defect Prediction,” Int. J. Mod. Educ.

Comput. Sci., vol. 12, no. 1, p. 1, 2020.

[41] V. Kumar, J. K. Chhabra, and D. Kumar, “Parameter

adaptive harmony search algorithm for unimodal and

multimodal optimization problems,” J. Comput. Sci.,

vol. 5, no. 2, pp. 144–155, 2014.

[42] T. Hall, S. Beecham, D. Bowes, D. Gray, and S.

Counsell, “A systematic literature review on fault

prediction performance in software engineering,”

IEEE Trans. Softw. Eng., vol. 38, no. 6, pp. 1276–

1304, 2011.

[43] C. Catal and B. Diri, “A systematic review of software

fault prediction studies,” Expert Syst. Appl., vol. 36,

no. 4, pp. 7346–7354, 2009.

[44] R. Malhotra, “A systematic review of machine

learning techniques for software fault prediction,”

Appl. Soft Comput., vol. 27, pp. 504–518, 2015.

[45] L. Chen, B. Fang, Z. Shang, and Y. Tang, “Negative

samples reduction in cross-company software defects

prediction,” Inf. Softw. Technol., vol. 62, pp. 67–77,

2015.

[46] X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X. Wang,

“Hydra: Massively compositional model for cross-

project defect prediction,” IEEE Trans. Softw. Eng.,

vol. 42, no. 10, pp. 977–998, 2016.

[47] T. Wang, Z. Zhang, X. Jing, and L. Zhang, “Multiple

Informatics Bulletin, Helwan University, Vol 6 Issue 1, January 2024

41

kernel ensemble learning for software defect

prediction,” Autom. Softw. Eng., vol. 23, pp. 569–590,

2016.

[48] X.-Y. Jing, Z.-W. Zhang, S. Ying, F. Wang, and Y.-P.

Zhu, “Software defect prediction based on

collaborative representation classification,” in

Companion Proceedings of the 36th International

Conference on Software Engineering, 2014, pp. 632–

633.

[49] S. Wang, T. Liu, and L. Tan, “Automatically learning

semantic features for defect prediction,” in

Proceedings of the 38th International Conference on

Software Engineering, 2016, pp. 297–308.

[50] Y. Liu, M. Xie, J. Yang, and M. Zhao, “A new

framework and application of software reliability

estimation based on fault detection and correction

processes,” in 2015 IEEE International Conference on

Software Quality, Reliability and Security, 2015, pp.

65–74.

[51] X. Yang, D. Lo, X. Xia, and J. Sun, “TLEL: A two-

layer ensemble learning approach for just-in-time

defect prediction,” Inf. Softw. Technol., vol. 87, pp.

206–220, 2017.

[52] T. Wang, Z. Zhang, X. Jing, and Y. Liu, “Non‐

negative sparse‐based SemiBoost for software defect

prediction,” Softw. Testing, Verif. Reliab., vol. 26, no.

7, pp. 498–515, 2016.

[53] Z.-W. Zhang, X.-Y. Jing, and T.-J. Wang, “Label

propagation based semi-supervised learning for

software defect prediction,” Autom. Softw. Eng., vol.

24, pp. 47–69, 2017.

[54] J. Nam and S. Kim, “Clami: Defect prediction on

unlabeled datasets (t),” in 2015 30th IEEE/ACM

International Conference on Automated Software

Engineering (ASE), 2015, pp. 452–463.

[55] F. Zhang, Q. Zheng, Y. Zou, and A. E. Hassan,

“Cross-project defect prediction using a connectivity-

based unsupervised classifier,” in Proceedings of the

38th International Conference on Software

Engineering, 2016, pp. 309–320.

[56] D. Ryu, J.-I. Jang, and J. Baik, “A transfer cost-

sensitive boosting approach for cross-project defect

prediction,” Softw. Qual. J., vol. 25, pp. 235–272,

2017.

[57] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A.

Panichella, and S. Panichella, “Defect prediction as a

multiobjective optimization problem,” Softw. Testing,

Verif. Reliab., vol. 25, no. 4, pp. 426–459, 2015.

[58] X. XUAN, L. O. David, X. XIA, and Y. TIAN,

“Evaluating Defect Prediction using a Massive Set of

Metrics.(2015),” in SAC’15: Proceedings of the 30th

Annual ACM Symposium on Applied Computing,

Salamanca, Spain, April 13, vol. 17, pp. 1644–1647.

[59] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A

systematic and comprehensive investigation of

methods to build and evaluate fault prediction

models,” J. Syst. Softw., vol. 83, no. 1, pp. 2–17, 2010.

[60] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting

the impact of classification techniques on the

performance of defect prediction models,” in 2015

IEEE/ACM 37th IEEE International Conference on

Software Engineering, 2015, vol. 1, pp. 789–800.

[61] Y. Jiang, B. Cukic, and Y. Ma, “Techniques for

evaluating fault prediction models,” Empir. Softw.

Eng., vol. 13, pp. 561–595, 2008.

[62] F. Antaki, R. G. Coussa, G. Kahwati, K. Hammamji,

M. Sebag, and R. Duval, “Accuracy of automated

machine learning in classifying retinal pathologies

from ultra-widefield pseudocolour fundus images,”

Br. J. Ophthalmol., vol. 107, no. 1, pp. 90–95, 2023.

