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Abstract—Medical image segmentation is essential for detect- 

ing and localizing tumors in medical image analysis. Image 
segmentation involves the identification of anatomical structures 
in images. Medical image segmentation starts with manual 
segmentation using Atlas methods, then auto-segmentation, facil- 
itated by deep learning algorithms. Deep learning-based medical 
image segmentation retains a significant pledge in reducing 
treatment planning, radiation-related toxicities, and side effects. 
This study provides a complete overview of deep-learning medical 
image segmentation models. We review various deep-learning 
models and architectures applied to medical image segmentation, 
including fully convolutional networks, U-Net, and attention- 
based models. This literature review discusses using different loss 
functions, data augmentation techniques, and transfer learning  
in deep learning-based medical image segmentation and several 
types of medical image modality. Evaluation analysis encloses 
benchmark datasets for human body organs such as the brain, 
lungs, chest, and liver. Finally, we summarize the challenges and 
future directions of deep learning for medical image 
segmentation. 

Index Terms—Medical Image Segmentation, Computed To- 
mography (CT), Magnetic Resonance Imaging (MRI), Deep 
learning, CNN, U-Net 

 

I. INTRODUCTION 

MAGE segmentation divides an image into multiple seg- 

ments or regions. It is an essential issue in computer vision, 

with applications ranging from object detection to medical 

imaging to autonomous driving. The traditional methods of 

image segmentation involve handcrafted features and super- 

vised learning algorithms. However, with the introduction of 

deep learning, the segmentation of images is revolutionized. 

Deep learning algorithms outperform humans in segmenting 

image tasks, making it an active research area in recent years. 

FCNs are among the first algorithms to use a deep learning-

based fully convolutional neural network for image 

segmentation. They can produce dense pixel-wise predictions, 

making them suitable for semantic segmentation tasks. One of 

the recent architectures is U-Net, a popular algorithm for deep 

learning-based medical image segmentation. It is an end- to-

end architecture that comprises a network of encoders and 

decoders. The encoder network performs feature extraction, 

while the decoder network performs upsampling to produce a 

segmentation mask. The literature proposes various segmen- 

tation techniques or algorithms that overcome the limitations 

 
of traditional medical segmentation approaches. The appro- 

priate approach or algorithm selection depends on the image 

issue’s nature. As a result, examining recent developments in 

image segmentation methods is required to determine the best 

approach for a specific medical image problem [1]. 

The most common medical imaging technology types used 

in clinical diagnosis are computed tomography (CT), X-rays, 

magnetic resonance imaging (MRI), ultrasound imaging (UI), 

and positron emission tomography (PET). In addition, popular 

RGB images include microscope and fundus images of the 

retina. Medical imaging provides vast information, and physi- 

cians utilize CT scans alongside additional diagnostic images 

to evaluate the patient’s health. Consequently, the research 

focus on computer vision shifts to medical image processing, 

as it is now the primary concern of medical professionals to 

extract as much information as possible  from these  images 

for diagnosis and treatment planning [2]. Deep learning-based 

image segmentation algorithms demonstrate promising results 

in image segmentation with the fast expansion of artificial 

intelligence, specifically deep learning [3]. Regarding seg- 

mentation accuracy and speed, deep learning provides several 

benefits over traditional machine learning and computer vision 

approaches. Clinicians can validate the size of tumor tissues, 

objectively assess the impact before and after therapy, and 

considerably lessen their burden thanks to effective medical 

image segmentation using deep learning. 

The contribution of this paper is to present a study to pro- 

vide insights into deep-learning medical image segmentation. 

It represents the challenges and open issues to promote interest 

in investigating and exploring medical image segmentation. 

This paper presents the approaches and deep learning models 

to give insights to the researchers who get started in medical 

image segmentation. It also illustrates the types of these 

images with the most frequently used dataset for different 

organs and their use with the deep learning models. 

The remaining sections of the paper are structured as 

follows: Section II shows the image segmentation approaches, 

followed by an overview of deep learning segmentation models 

in Section III. We present various types of medical images  

related to the segmentation problem in Section IV. In Section 

V, medical image segmentation datasets are illustrated. Section 

VI focuses on image segmentation techniques for different 

organs. Section VII illustrates the challenges and open issues, 
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and the paper concludes with a summary in Section VIII. 

 
II. IMAGE SEGMENTATION APPROACHES 

Image segmentation is a crucial subject in the study of 

computer vision, and in recent years, it has received attention 

in research on how to comprehend images. Segmentation is the 

process of breaking up an image into different parts depending 

on many features, including color, grayscale, spatial texture, 

and geometric forms [4]. The objective is to retain consistency 

across features within a single region while making it evident 

when one area differs. Image segmentation may be divided into 

semantic, instance, and panoramic segments depending on the 

level of feature depth. Semantic segmentation is one of these 

areas and includes medical image segmentation. The subfields 

of image segmentation research include autonomous driving, 

medical image segmentation, and satellite image segmentation, 

to name a few [5]. The image segmentation approach gradually 

improves in accuracy as the recommended network model 

architecture. Nevertheless, no unique segmentation method can 

be used for all images and segmentation situations [6]. 

Traditional image segmentation approaches in computer 

vision and image processing are no longer adequate compared 

to deep learning-based approaches, although they are still 

valuable to learn [7, 8, 9]. Edge detection, threshold-based 

segmentation, and region-based segmentation are some of the 

classical approaches that segment images based on principles 

of mathematics and digital image processing [10, 11, 12]. 

These techniques are computationally efficient and have fast 

segmentation speeds. However, they  need  more  specificity 

in terms of segmentation accuracy. Deep learning-based ap- 

proaches have shown significant advances in image segmen- 

tation in recent years and demonstrated higher segmentation 

accuracy than conventional methods. The first successful use 

of deep learning to semantically segment images is achieved 

using a fully convolutional network. Many exceptional seg- 

mentation networks, such as RefineNet, Mask R-CNN, U- 

Net, and DeconvNet [13, 14, 15, 16, 17, 18], offer superior 

processing capability for fine edges. 

 

III. DEEP LEARNING SEGMENTATION MODELS 

Convolutional neural networks (CNNs) possess robust fea- 

ture expression and feature extraction abilities, which make 

them an ideal candidate for medical image segmentation tasks. 

They eliminate the need for extensive image preprocessing or 

manual feature extraction, resulting in more streamlined and 

efficient image segmentation procedures. Most recently, CNNs 

have been employed to segment medical images, achieving  

notable success. FCN, U-Net, and GAN are the categories 

currently existing in medical image segmentation methods 

based on deep learning. This section illustrates the results of 

the classical research studies and the benefits and limitations 

of each segmentation method. 

 
A. Fully Convolutional Neural Networks 

A fully convolutional network (FCN) is one of the first net- 

works to implement this technique. This section analyzes the 

advantages and disadvantages of fully convolutional networks 

and highlights the various applications of a fully convolutional 

network and its variants. 

1) FCN: Adding fully connected layers to convolutional 

neural networks, such as ResNet and VGG, provides category 

probability information after the softmax layer.  However,  

only the overall image category may be determined, not the 

category of individual pixels, rendering it unsuitable while 

segmenting images. The Fully Convolutional Network (FCN) 

was suggested by Long et al. [19] as a solution to this problem 

with a 20% relative improvement to 62.2% mean IU in 2012. 

Convolutional layers comprise the first five levels of a standard 

CNN design, while fully connected (one-dimensional vector) 

layers of 4096 in length comprise the sixth and seventh layers. 

The eighth layer is a fully connected layer that has a length    

of 1000, signifying the likelihood of 1000 categories. Layers 

five through seven are turned into convolutional layers with 

different kernel sizes of 7 x 7, 1 x 1, and 1 x 1, respectively, to 

produce each pixel having a two-dimensional feature map. The 

softmax layer is used to obtain pixel categorization informa- 

tion, resulting in the resolution of the segmentation problem. 

FCN does not have any input image size restrictions. The final 

convolution layer’s feature map is upsampled and restored to 

the original input image size using the deconvolution layer. 

2) SegNet: SegNet is a pixel-level image segmentation 

model that builds upon the FCN semantic segmentation task 

and uses an encoder-decoder symmetric structure [20]. VGG16 

is the encoder to extract object information from the input im- 

age. The decoder assigns each pixel a color or label associated 

with its object information, which generates the final image. 

Unlike FCN’s deconvolution operation, which is used for 

upsampling lower-resolution feature maps, SegNet upsamples 

its input in a non-linear manner using a more extensive pooling 

index from the encoder rather than learning how to do so.  

This approach produces a dense feature map by generating     

a trainable convolution kernel applied to a sparse feature  

map. Eventually, the softmax classifier categorizes pixels in 

the feature maps, which have been restored to their original 

resolution. Depooling the low-resolution feature maps helps 

preserve the information with high frequency, enhances edge 

detection, and decreases the number of training parameters. 

B. U-Net 

1) 2D U-Net: To improve the widely-used FCN model, 

Ronneberger et al. [21] proposed a U-Net structure for bio- 

logical images. U-Net and its variants have shown remarkable 

success in several areas of computer vision, which has resulted 

in over 4000 citations since its introduction at the 2015 

MICCAI conference. Although many recent innovations in 

convolutional neural network design have occurred, U-Net’s 

concept remains an essential reference, with many researchers 

incorporating additional modules or design principles. 

The U-Net network is comprised of a U-shaped architecture 

with skip connections. It has a structure that is similar to the 

encoder-decoder structure of SegNet. Each of the four sub-  

modules in the encoder contains two convolutional layers used 

for downsampling, followed by max pooling. Similarly, the 

decoder includes four sub-modules, with incremental 

upsampling 
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to increase the resolution. Finally, pixel-wise predictions are 

made. Figure 1 displays the network architecture, which results 

in an output of 388 x 388 from a 572 x 572 input due to the 

medical profession’s need for greater segmentation precision. 

The network relies solely on convolution and downsampling 

without any fully connected layers. Each upsampling layer’s 

output is connected to the appropriate submodule in the 

encoder with the exact resolution using a skip connection. 

 

 

 

 
 

Fig. 1: 2D U-Net Structure [22]. 

 

 

 

 
 

2) 3D U-Net: Current medical image segmentation re- 

search is focused on developing the U-Net model, and several 

versions of it have been created. One of the versions is the  3D  

U-Net  model  presented  by  içek  et  al.  [23].  This 

approach provides the U-Net structure with more geographic 

information. The network architecture is shown in Figure 2;    

it is the same as U-Net in that there is only one path for 

encoding and one for decoding. Each course in the network 

may be adjusted to one of four different resolutions. Two 3 × 3 

convolutions and a ReLU layer comprise each encoding route 

layer; a maximum pooling layer is used for dimensionality 

reduction. Each convolution layer in the decoding pipeline 

consists of two 3 × 3 × 3 convolution layers, followed by          

a 2 × 2 × 2 deconvolution layer with a stride of 2, and finally, 

a ReLU layer. The layer in the encoding route with the exact 

resolution is given to the decoding path via a shortcut, which 

grants it access to high-resolution versions of the original 

features. The network can segment 3D images if it is got a 

sequence of images in which each slice is a 2D representation 

of the original 3D image. In addition to training on a sparsely 

labeled data set and different unlabeled places on that data set, 

this network may be trained on several sparsely labeled data 

sets and then used to predict new data. Compared to U-Net  

input, the stereo image input has three channels and is more 

significant at 132 × 132 × 116 pixels. The final image is 44 × 

44 × 28 pixels. The outstanding original features of FCN and 

U-Net are still present in 3D U-Net, and volumetric images 

can benefit from its introduction. 

 

 

Fig. 2: 3D U-Net Structure [23]. 

 
3) Segmentation Adversarial Network (SegAN): Using the 

U-Net architecture, Xue et al. [24] created an adversarial 

segmentation network (SegAN) for generating segments. Suc- 

cessful segmentation of medical images requires overcoming  

a number of  obstacles,  one  of  the  most  critical  of  which  

is the issue of unbalanced pixel categories. To optimize the 

segmentation network, the authors introduced a novel GAN- 

based segmentation network and a multiscale L1loss function. 

SegAN consists of segment network S and critic network 

C. A model with excellent performance is developed by 

alternatingly training a segmenter and a critic network in a 

min-max game. S adopts a typical U-Net topology for the 

segmented network. By using convolutional layers with a 

stride of 2 and a kernel size of 4x4, downsampling may be 

accomplished. Instead, 3x3 kernels and a stride of 1 are used in 

convolutional layers to do the upsampling. The original images 

and those masked by ground-truth-based or S-based label maps 

are sent to the critic network. This study uses the brain tumor 

segmentation (BRATS) dataset, which is more reliable and 

efficient for segmentation tasks. The authors suggested that the 

multiscale L1loss function optimizes the whole segmentation 

network compared to a single-scale loss function. 

4) Structure Correcting Adversarial Network (SCAN): In 

clinical practice, the most frequent kind of imaging is a chest 

X-ray (CXR) which is used as an imaging modality for detect- 

ing various cardiopulmonary pathologies due to its low radia- 

tion exposure and affordability, which account for more than 

55% of all medical imaging. Therefore, developing computer- 

aided detection (CAD) techniques that can complement CXRs 

is essential for medical professionals. Dai et al. [25] suggested 

a structural correction adversarial network (SCAN) to achieve 

as segment the heart and lung regions in CXR  images.  

Unlike previous works, where generative adversarial networks 

(GANs) were employed for image segmentation, this network 

architecture utilizes both discriminative and segmentation fully 

convolutional networks (FCNs) to process grayscale CXR 

images due to the limitations of a relatively small training 

dataset consisting of 247 images. 

In this study, the Fully Convolutional Network (FCN) is 

modified to be trained without using previously-established 

model information. Human physiological regularities are used 

by the critic network to place constraints on the convolutional 

segmentation network. The critic network can improve its ac- 
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curacy by comparing the mask produced by the segmentation 

network during training with the ground truth organ annota- 

tions. This allows the critic network to acquire higher-order 

structures during the confrontation phase, which helps direct 

the segmentation model toward more precise findings. The 

proposed method, SCAN, also incorporates a downsampling 

module tailored to the unique characteristics of CXR images. 

As results summary, Table I shows different segmentation 

models with their results and the datasets used. 

 
IV. TYPES OF MEDICAL IMAGES 

The choice of the input data is an important part of making 

accurate and useful deep-learning models for medical image 

segmentation. In this survey,  we review the different types   

of medical images that might be utilized as data for image 

segmentation problems, including X-ray, CT, ultrasound, MRI, 

and PET images. We discuss the unique characteristics of each 

modality, their strengths and limitations, and how they can be 

utilized to enhance medical image segmentation accuracy. 

 
A. Computed Tomography (CT) 

X-rays with narrow beams  are  focused  on  the  subject  

and rapidly spun around the body, computed  tomography  

(CT) generates signals processed by a computer to create 

cross-sectional images, also known as tomographic images. 

Compared to conventional x-rays, these images offer more 

comprehensive information, allowing doctors to quickly spot 

important parts, cancers, or abnormalities [26, 27]. The com- 

puter creates a three-dimensional (3D) image of the patient 

from numerous sequential slices, which might be helpful for 

diagnosis and therapy planning. A CT scan may provide 

tomographic images of specific bodily areas, such as the brain 

or bladder, without requiring surgical incisions by integrating 

several x-ray readings collected at different angles. 

for example, during dental work or following a bone fracture 

[28, 29, 30]. 

 

Fig. 4: Chest  X-Ray. 

 

 

C. Magnetic Resonance Imaging (MRI) 

Magnetic resonance imaging, as compared to CT  scans  

and X-rays, is a non-radiative, three-dimensional imaging 

technology that generates comprehensive anatomical images. 

MRI utilizes potent magnetic fields and radio frequency pulses 

to generate finely detailed images of interior body structures, 

including organs, smooth tissues, and bones. A patient must 

remain still while positioned within a large magnet to produce 

an MRI image. MRIs offer images of the same body parts as 

CT scans but with greater depth, providing a more detailed  

examination of specific structures [31, 32]. 

 

Fig. 5: Liver  MRI. 

 

 

 

 
B. X-Ray 

 

Fig. 3: Liver CT. 
 

D. Ultrasound Imaging (UI) 

Ultrasound diagnostic imaging, also known as diagnostic 

To aid in diagnosing damage and sickness, diagnostic imag- 

ing uses electromagnetic radiation in the form of X-rays. The 

body’s tissues are penetrated by X-rays, which then cast a 

black-and-white image onto a screen. Bones, teeth and the 

chest may all be examined using standard X-ray techniques 

(lungs, heart, bones). Most people have had an X-ray taken, 

sonography or ultrasonography, utilizes high-frequency sound 

waves to create an image of the interior organs of the body, 

blood vessels, joints, muscles, and tendons. This non-invasive 

method captures echoes from the waves penetrating the body, 

generating a real-time image. Unlike x-rays, ultrasound does 

not use ionizing radiation [33, 34]. 
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Fig. 6: Unborn  UI. 

 
E. Positron-Emission Tomography (PET) 

Positron emission tomography, a nuclear medicine tech- 

nique, tracks the metabolic activity of cells in various bod-   

ily tissues by combining nuclear medicine and biochemical 

analysis. PET assists in visualizing the biochemical processes 

occurring in the body, such as the metabolism of the heart 

muscle, which involves the transformation of food into energy 

following digestion and circulation. PET is mainly used in 

cancer, brain disorders, or heart ailments patients [35, 36]. 

PET can be used with other diagnostic procedures, for 

example, MRI or CT, to provide more expressive information 

about malignant tumors and other anomalies. PET and CT 

technologies have been integrated into a recent technological 

innovation, the PET/CT scanner. PET/CT is a promising tool 

for diagnosing and treating lung cancer, Alzheimer’s, and 

coronary artery disease [37, 38, 39]. 

 

Fig. 7: Brain  PET. 

 

V. MEDICAL IMAGE SEGMENTATION DATASETS 

Obtaining enough data to build the dataset is essential 

for deep-learning model segmentation. The label-standardized 

dataset corresponds to expert-annotated high-quality image 

data and the segmentation algorithm’s accuracy enables mean- 

ingful comparisons among multiple systems. The benchmark 

datasets used in medical image segmentation will be described 

in this section. 

Brain Tumor Segmentation (BRATS): This is a MICCAI 

conference-related dataset that is the result of a brain tumor 

segmentation competition [40, 41, 42]. The competition has 

been performed yearly since 2012 to evaluate various tech- 

niques for segmenting brain tumors into smaller pieces. A 

growing number of training sets are added each year. 

Lung Image Database Consortium Image Collection 

(LIDC-IDRI): The dataset consists of medical images of the 

chest obtained from imaging techniques such as CT scans and 

X-rays, along with lesion labels indicating the corresponding 

diagnostic results. This dataset of 1018 research occurrences 

is used to examine the early detection of cancer in groups at 

increased risk [43, 44, 45]. 

Segmentation in Chest Radiographs (SCR): The JSRT 

database is a widely  used  collection  of  chest  radiographs  

in medical imaging. The SCR database was developed to 

facilitate the comparison of heart, lung area, and clavicle 

segmentation considering traditional posterior radiographs of 

the chest [46, 47, 48]. The database is partitioned rigorously  

to create benchmarks for evaluation of the dataset; 154 images 

include at least one lung nodule, while the remaining 93 

images do not. 

Liver Tumor Segmentation Challenge: The purpose of 

this competition is to motivate researchers to create ways of 

segmenting liver lesions. The challenge data and slices are 

contributed from various clinical sites worldwide. The testing 

dataset comprises 70 computed tomography (CT) scans, while 

the training dataset consists of 130 CT scans [49, 50, 51]. 

Liver Tumor Segmentation (LiTS): Some clinical insti- 

tutions worldwide provide liver segmentation and liver tumor 

statistics in medical imaging research. There are 130 CT scans 

in the training dataset and 70 scans in the test dataset. These 

datasets explore and compare liver segmentation techniques 

[52, 53, 54]. 

 
VI. IMAGE SEGMENTATION FOR DIFFERENT ORGANS 

The human body has diverse organs and tissues with unique 

characteristics. Researchers extract crucial concepts from such 

scenarios and develop segmentation algorithms that cater to 

different organs to enhance segmentation accuracy. Below, we 

describe the optimal method for segmenting diverse organs. 

 
A. Brain 

MRI is a paramount diagnostic tool for brain-related ill- 

nesses. Brain imaging analysis provides insights into various 

brain diseases, including Alzheimer’s, schizophrenia, and tu- 

mors [65]. Myronenko et al. [66] developed an asymmetric 

FCN and a deep learning network with residual learning to 

segment 3D MRI brain tumors, which won first place in a 2018 

competition. Nie et al. used T1, T2, and diffusion-weighted 

modal brain imaging to analyze the brains of eleven healthy 

babies. They applied a 3D FCN to segment multimodal brain 

MRI images by incorporating semantic context and combining 

features of various sizes. To achieve more accurate edge 

segmentation, Wang et al. [66] improved upon the FCN-8S and 

other key semantic segmentation networks with an accuracy  

of 87.31% by proposing a CRF-based edge-sensing FCN by 

the loss function that  includes  edge  information.  Borne  et 

al. achieved 85% accuracy using multiple segmentations with 

GAN. Adversarial training was employed by Moeskops et al. 
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TABLE I: Different segmentation models with their results and datasets. 
 

Author Model Dataset Accuracy 

Xue et al. [24] SegAN BraTS 2015 DSC: 0.85 

Zhang et al. [55] U-Net BraTS 2017 DSC: 0.85 

Zhang et al. [55] ResU-Net BraTS 2017 DSC: 0.86 

Zhang et al. [55] AGResU-Net BraTS 2017 DSC: 0.87 

Alqazzaz et al. [56] SegNet BraTS 2017 DSC: 0.85 

Sun et al. [57] 3D FCN BraTS 2018 DSC: 0.90 

Zhang et al. [55] AGResU-Net BraTS 2019 DSC: 0.87 

Aboelenein et al. [58] MIRAU-Net BraTS 2019 DSC: 0.88 

Sheng et al. [59] ResU-Net BraTS 2019 DSC: 0.88 

Yan et al. [60] U-Net BraTS 2021 DSC: 0.87 

Ahmed et al. [61] MS UNet BraTS 2021 DSC: 0.91 

Raza et al. [62] dResU-Net BraTS 2021 DSC: 0.86 

Suji et al. [63] U-Net LIDC-IDRI IoU: 0.59 

Mohagheghi et al. [64] 3D U-Net Sliver07-I DSC: 0.97 

 
 

[67] to enhance completely and dilate convolutional networks’ 

capacity to segment brain MRIs. CNNs were trained for 

semantic segmentation of brain tumors by Rezaei et al. [68], 

leading to improved segmentation accuracy. 

 

B. Chest 

In the medical field, chest X-rays are frequently used for 

diagnostic purposes as they are rapid and straightforward. 

Chest X-rays employ low radiation doses to capture images of 

the chest, which can be used to segment the lung region and aid 

in diagnosing and tracking lung diseases, including pneumonia 

and cancer [69]. The SCAN technique can segment the lung 

regions and heart in chest X-rays. To address the problem of 

overfitting and the parameters number in the original U-Net 

model, Novikov et al. [70] introduced an all-convolutional 

adaptation of U-Net with stridden convolutions that reduces 

the parameters number by a significant margin of ten while 

maintaining accuracy and producing superior results. 

 

C. Abdomen 

Abdominal MRI and CT scans may be used to distinguish 

between the spleen, liver, kidneys, and other organs for 

diagnostic purposes. Improvements in GAN have also been 

used in the segmentation of abdominal organs. An adversarial 

image-to-image network, or DI2IN-AN, was suggested by 

Yang et al. [71] as a means of liver segmentation. During 

training, the generator makes segmentation predictions while 

the discriminator separates them from the ground truth. Due to 

its size and shape, the spleen presents a significant challenge 

when attempting to segment MRI images of the organ. The 

splenomegaly segmentation network (SSNet) was suggested 

by Huo et al. [72] to solve this problem by using the cGAN 

architecture. The Markovian Discriminator (PatchGAN) is 

employed in place of the generator to reduce false negatives 

and false positives, while the generator uses a Global Convo- 

lutional Network (GCN). 

VII. IMAGE SEGMENTATION CHALLENGES 

Despite their success, deep learning-based approaches still 

face several challenges and open issues in medical image seg- 

mentation. The survey identified several challenges and open 

issues in medical image segmentation using deep learning 

approaches. These issues include: 

• Insufficient training data: a large amount of labeled train- 

ing data are necessary for deep learning-based approaches 

to achieve optimal performance. However, medical image 

datasets are often limited in size and may not contain 

enough labeled data for training. 

• Class imbalance: Medical images often contain class 

imbalance, where the number of pixels belonging to the 

region of interest is significantly lower than the back- 

ground pixels. This class imbalance can lead to biased  

segmentation results. 

• Model generalization: Deep learning models trained on 

one set of data may not work well on other sets of data 

due to differences in how images look and how clinical 

protocols can change. 

• Interpretability and explainability: Deep learning models 

are often considered ”black boxes,” making it difficult to 

interpret the segmentation results and provide explana- 

tions for clinical decision-making. 

• Incorporating prior knowledge: Deep learning models 

may not incorporate prior knowledge of anatomy or 

pathology, which can improve segmentation accuracy and 

reduce false positives. 

 
VIII. CONCLUSION 

Over the past few years, approaches based on deep learning 

have done well at segmenting medical images because they 

can learn complex features from the data. Medical images 

often contain complex structures and require high accuracy    

in segmentation. Deep learning techniques for medical image 

segmentation have shown significant promise lately. In this 

survey, The studies were further categorized based on the 
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medical imaging modalities, for example, ultrasound, CT, and 

MRI. The studies were also classified based on deep learning 

algorithms, for example, FCN, SegNet, U-Net, and SegAN. 

In addition, this survey paper has provided insights into 

open issues that can lead to more accurate and reliable medical 

image segmentation, ultimately improving patient outcomes. 

Potential solutions to be tested are data augmentation, loss 

function balancing, transfer learning, and hybrid models com- 

bining deep learning and traditional methods. 
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[23] Ö zgün  Ç içek,  Ahmed  Abdulkadir,  Soeren  S  Lienkamp, 

Thomas Brox, and Olaf Ronneberger. 3d u-net: learning 

dense volumetric segmentation from sparse annotation. 

In International conference on medical image comput- 

ing and computer-assisted intervention, pages 424–432. 

Springer, 2016. 

[24] Yuan Xue, Tao Xu, Han Zhang, L Rodney Long, and 

Xiaolei Huang. Segan: adversarial network with multi- 

scale l1 loss for medical image segmentation. Neuroin- 



 

8 

 

formatics, 16(3):383–392, 2018. 

[25] Wei Dai, Nanqing Dong, Zeya Wang, Xiaodan Liang, 

Hao Zhang, and Eric P Xing. Scan: Structure correcting 

adversarial network for organ segmentation in chest x- 

rays. In Deep learning in medical image analysis and 

multimodal learning for clinical decision support, pages 

263–273. Springer, 2018. 

[26] Haijo Jung. Basic physical principles and clinical appli- 

cations of computed tomography. Progress in Medical 

Physics, 32(1):1–17, 2021. 

[27] Philip J Withers, Charles Bouman, Simone Carmignato, 

Veerle Cnudde, David Grimaldi, Charlotte K Hagen, Eric 

Maire, Marena Manley, Anton Du Plessis, and Stuart R 

Stock. X-ray computed tomography. Nature Reviews 

Methods Primers, 1(1):1–21, 2021. 

[28] T Lurthu Pushparaj, E Fantin Irudaya Raj, and E Francy 

Irudaya Rani. A detailed review of contrast-enhanced 

fluorescence magnetic resonance imaging techniques for 

earlier prediction and easy detection of covid-19. Com- 

puter Methods in Biomechanics and Biomedical Engi- 

neering: Imaging & Visualization, pages 1–13, 2022. 

[29] Benjamin E Rush. Using Bioimaging Techniques as 

Muscle Quality Biomarkers for Sarcopenia and Cachexia 

Diagnosis and Treatment. PhD thesis, The University of 

Wisconsin-Madison, 2022. 

[30] Eric C Ledbetter and Ian R Porter. Advanced ophthalmic 

imaging in the horse. Equine Ophthalmology, pages 90– 

132, 2022. 

[31] Pallavi Bhosle, Hujeb Pathan, Ganesh Tapadiya,  and  

Md Irshad Alam. Case study on oropharyngeal cancer 

prediction and diagnosis and management based upon 

mri, ct scan imaging techniques. In Disruptive Develop- 

ments in Biomedical Applications, pages 91–106. CRC 

Press, 2022. 

[32] Toufique A Soomro, Lihong Zheng, Ahmed J Afifi, 

Ahmed Ali, Shafiullah Soomro, Ming Yin, and Junbin 

Gao. Image segmentation for mr brain tumor detection 

using machine learning: A review. IEEE Reviews in 

Biomedical Engineering, 2022. 

[33] Jeffrey Smith, Allison N Schroeder,  Alexander  R  

Lloyd, and Kentaro Onishi. Evolution of sports ultra- 

sound. In Musculoskeletal Ultrasound-Guided Regener- 

ative Medicine, pages 437–468. Springer, 2022. 

[34] Lars A Gjesteby, Joseph R Pare, and Laura J Brattain. 

Ultrasound for the emergency department and prehospital 

care. In Engineering and Medicine in Extreme Environ- 

ments, pages 209–234. Springer, 2022. 

[35] Krishna Kanta Ghosh, Parasuraman Padmanabhan, 

Chang-Tong Yang, David Chee Eng Ng, Mathangi 

Palanivel, Sachin Mishra, Christer Halldin, and Balazs 

Gulyas. Positron emission tomographic imaging in drug 

discovery. Drug Discovery Today, 27(1):280–291, 2022. 

[36] Mai Lin, Ryan P Coll, Allison S Cohen, Dimitra K 

Georgiou, and Henry Charles Manning. Pet oncological 

radiopharmaceuticals: Current status and perspectives. 

Molecules, 27(20):6790, 2022. 

[37] Domenico Albano, Francesco Dondi, Francesco 

Bertagna, and Giorgio Treglia. The role of [68ga] ga- 

pentixafor pet/ct or pet/mri in lymphoma: A systematic 

review. Cancers, 14(15):3814, 2022. 

[38] Yuhan Yang, Bo Zheng, Yueyi Li, Yuan Li, and Xuelei 

Ma. Computer-aided diagnostic models to classify lymph 

node metastasis and lymphoma involvement in enlarged 

cervical lymph nodes using pet/ct. Medical Physics, 

2022. 

[39] Alfred O Ankrah, Ismaheel O Lawal, Rudi AJO Dier- 

ckx, Mike M Sathekge, and Andor WJM Glaudemans. 

Imaging of invasive fungal infections-the role of pet/ct. 

In Seminars in Nuclear Medicine. Elsevier, 2022. 

[40] Ujjwal Baid, Satyam Ghodasara, Suyash Mohan, Michel 

Bilello, Evan Calabrese, Errol Colak, Keyvan Farahani, 

Jayashree Kalpathy-Cramer, Felipe C Kitamura, Sarthak 

Pati, et al. The rsna-asnr-miccai brats 2021 benchmark 

on brain tumor segmentation and radiogenomic classifi- 

cation. arXiv preprint arXiv:2107.02314, 2021. 

[41] Sarthak Pati, Ujjwal Baid, Maximilian Zenk, Brandon 

Edwards, Micah Sheller, G Anthony Reina, Patrick Foley, 

Alexey Gruzdev, Jason Martin, Shadi Albarqouni, et al. 

The federated tumor segmentation (fets) challenge. arXiv 

preprint arXiv:2105.05874, 2021. 

[42] Bjoern H Menze, Andras Jakab, Stefan Bauer, Jayashree 

Kalpathy-Cramer, Keyvan Farahani, Justin Kirby, Yuliya 

Burren, Nicole Porz, Johannes Slotboom, Roland Wiest, 

et al. The multimodal brain tumor image segmentation 

benchmark (brats). IEEE transactions on medical imag- 

ing, 34(10):1993–2024, 2014. 

[43] Hanxiao Zhang, Xiao Gu, Minghui Zhang, Weihao Yu, 

Liang Chen, Zhexin Wang, Feng Yao, Yun Gu, and 

Guang-Zhong Yang. Re-thinking and re-labeling lidc-idri 

for robust pulmonary cancer prediction. In Workshop on 

Medical Image Learning with Limited and Noisy Data, 

pages 42–51. Springer, 2022. 

[44] Yanbo Shao, Minghao Wang, Juanyun Mai, Xinliang Fu, 

Mei Li, Jiayin Zheng, Zhaoqi Diao, Airu Yin, Yulong 

Chen, Jianyu Xiao, et al. Lidp: A lung image dataset 

with pathological information for lung cancer screening. 

In International Conference on Medical Image Comput- 

ing and Computer-Assisted Intervention, pages 770–779. 

Springer, 2022. 

[45] Ritu Tandon, Shweta Agrawal, Rachana Raghuwanshi, 

Narendra Pal Singh Rathore, Lalji Prasad, and Vishal 

Jain. Automatic lung carcinoma identification and clas- 

sification in ct images using cnn deep learning model. In 

Augmented Intelligence in Healthcare: A Pragmatic and 

Integrated Analysis, pages 143–166. Springer, 2022. 

[46] Manawaduge Supun De Silva, Barath Narayanan 

Narayanan, and Russell C Hardie. A patient-specific 

algorithm for lung segmentation in chest radiographs. AI, 

3(4):931–947, 2022. 

[47] Rupanjali Chaudhuri, Divya Nagpal, Abhinav Azad, and 

Suman Pal. We-net: An ensemble deep learning model 

for covid-19 detection in chest x-ray images using seg- 

mentation and classification. In International Conference 

on Advances in Computing and Data Sciences, pages 

112–123. Springer, 2022. 

[48] Pratima Upretee and Bishesh Khanal. Fixmatchseg: Fix- 



 

9 

 

ing fixmatch for semi-supervised semantic segmentation. 

arXiv preprint arXiv:2208.00400, 2022. 

[49] Devidas  T  Kushnure  and  Sanjay  N  Talbar.  Hfru-   

net: High-level feature fusion  and  recalibration  unet  

for automatic liver and tumor segmentation in ct im- 

ages. Computer Methods and Programs in Biomedicine, 

213:106501, 2022. 

[50] Yoo Jung Kim, Hyungjoon Jang, Kyoungbun Lee, 

Seongkeun Park, Sung-Gyu Min,  Choyeon  Hong,  

Jeong Hwan Park, Kanggeun Lee, Jisoo Kim, Wonjae 

Hong, et al. Paip 2019: Liver cancer segmentation 

challenge. Medical Image Analysis, 67:101854, 2021. 

[51] Jianpeng Zhang, Yutong Xie, Pingping Zhang, Hao Chen, 

Yong Xia, and Chunhua Shen. Light-weight hybrid 

convolutional network for liver tumor segmentation. In 

IJCAI, volume 19, pages 4271–4277, 2019. 

[52] Patrick Bilic, Patrick Christ, Hongwei Bran Li, Eugene 

Vorontsov, Avi Ben-Cohen, Georgios Kaissis, Adi Sze- 

skin, Colin Jacobs, Gabriel Efrain Humpire Mamani, 

Gabriel Chartrand, et al. The liver tumor segmentation 

benchmark (lits). Medical Image Analysis, 84:102680, 

2023. 

[53] Omar Ibrahim Alirr. Deep learning and level set approach 

for liver and tumor segmentation from ct scans. Journal 

of Applied Clinical Medical Physics, 21(10):200–209, 

2020. 

[54] Patrick Bilic, Patrick Ferdinand Christ, Eugene 

Vorontsov,   G  Chlebus,  H  Chen,  Q  Dou,  CW  Fu,    

X Han, PA Heng, J Hesser, et al. The liver tumor 

segmentation benchmark (lits). arxiv. arXiv preprint 

arXiv:1901.04056, 2019. 

[55] Jianxin Zhang, Zongkang Jiang, Jing Dong, Yaqing Hou, 

and Bin Liu. Attention gate resu-net for automatic mri 

brain tumor segmentation. IEEE Access, 8:58533–58545, 

2020. 

[56] Salma Alqazzaz, Xianfang Sun, Xin Yang, and Len 

Nokes. Automated brain tumor segmentation on multi- 

modal mr image using segnet. Computational Visual 

Media, 5:209–219, 2019. 

[57] Jindong Sun, Yanjun Peng, Yanfei Guo, and Dapeng Li. 

Segmentation of the multimodal brain tumor image used 

the multi-pathway architecture method based on 3d fcn. 

Neurocomputing, 423:34–45, 2021. 

[58] Nagwa M AboElenein, Songhao Piao, Alam Noor, and 

Pir Noman Ahmed. Mirau-net: An improved neural 

network based on u-net for gliomas segmentation. Signal 

Processing: Image Communication, 101:116553, 2022. 

[59] Ning Sheng, Dongwei Liu, Jianxia Zhang, Chao Che,  

and Jianxin Zhang. Second-order resu-net for automatic 

mri brain tumor segmentation. Mathematical Biosciences 

and Engineering, 18(5):4943–4960, 2021. 

[60] Benjamin B Yan, Yujia Wei, Jaidip Manikrao M Jagtap, 

Mana Moassefi, Diana V Vera Garcia, Yashbir Singh, 

Sanaz Vahdati, Shahriar Faghani, Bradley J Erickson, and 

Gian Marco Conte. Mri brain tumor segmentation using 

deep encoder-decoder convolutional neural networks. In 

International MICCAI Brainlesion Workshop, pages 80– 

89. Springer, 2022. 

[61] Parvez Ahmad, Saqib Qamar,  Linlin  Shen,  Syed  

Qasim Afser Rizvi, Aamir Ali, and Girija Chetty. Ms 

unet: Multi-scale 3d unet for brain tumor segmentation. 

In International MICCAI Brainlesion Workshop, pages 

30–41. Springer, 2022. 

[62] Rehan Raza, Usama Ijaz Bajwa, Yasar Mehmood, 

Muhammad Waqas Anwar, and M Hassan Jamal. dresu- 

net: 3d deep residual u-net based brain tumor segmenta- 

tion from multimodal mri. Biomedical Signal Processing 

and Control, 79:103861, 2023. 

[63] R Jenkin Suji, W Wilfred Godfrey, and Joydip Dhar. 

Exploring pretrained encoders for lung nodule segmen- 

tation task using lidc-idri dataset. Multimedia Tools and 

Applications, pages 1–24, 2023. 

[64] Saeed Mohagheghi and Amir Hossein Foruzan. In- 

corporating prior shape knowledge via data-driven loss 

model to improve 3d liver segmentation in deep cnns.  

International journal of computer assisted radiology and 

surgery, 15:249–257, 2020. 

[65] Tran Anh Tuan, The Bao Pham, Jin Young Kim, and Joao 

Manuel RS Tavares. Alzheimer’s diagnosis using deep 

learning in segmenting and classifying 3d brain mr im- 

ages. International Journal of Neuroscience, 132(7):689– 

698, 2022. 

[66] Andriy Myronenko. 3d mri brain tumor segmentation us- 

ing autoencoder regularization. In International MICCAI 

brainlesion workshop, pages 311–320. Springer, 2019. 

[67] Pim Moeskops, Mitko  Veta,  Maxime  W  Lafarge,  

Koen AJ Eppenhof, and Josien PW Pluim. Adversarial 

training and dilated convolutions for brain mri segmen- 

tation. In Deep learning in medical image analysis and 

multimodal learning for clinical decision support, pages 

56–64. Springer, 2017. 

[68] Mina Rezaei, Konstantin Harmuth, Willi Gierke, Thomas 

Kellermeier, Martin Fischer, Haojin Yang, and Christoph 

Meinel. A conditional adversarial network for semantic 

segmentation of brain tumor. In International MICCAI 

Brainlesion Workshop, pages 241–252. Springer, 2017. 

[69] Abhir Bhandary, G Ananth Prabhu, Venkatesan Ra- 

jinikanth, K Palani Thanaraj, Suresh Chandra Satapathy, 

David E Robbins, Charles Shasky, Yu-Dong Zhang, João 

Manuel RS Tavares, and N Sri Madhava Raja. Deep- 

learning framework to detect lung abnormality–a study 

with chest x-ray and lung ct scan images. Pattern 

Recognition Letters, 129:271–278, 2020. 

[70] Alexey A Novikov, Dimitrios Lenis, David Major, Jǐ ŕ ı 

Hladvka, Maria Wimmer, and Katja Bühler. Fully convo- 

lutional architectures for multiclass segmentation in chest 

radiographs. IEEE transactions on medical imaging, 

37(8):1865–1876, 2018. 

[71] Dong  Yang,  Daguang  Xu,  S  Kevin   Zhou,   Bog-   

dan Georgescu, Mingqing Chen, Sasa Grbic, Dimitris 

Metaxas, and Dorin Comaniciu. Automatic liver seg- 

mentation using an adversarial image-to-image network. 

In International conference on medical image comput- 

ing and computer-assisted intervention, pages 507–515. 

Springer, 2017. 

[72] Yuankai Huo, Zhoubing Xu, Shunxing Bao, Camilo 



 

10 

 

Bermudez, Andrew J Plassard, Jiaqi Liu, Yuang Yao, 

Albert Assad, Richard G Abramson, and Bennett A 

Landman. Splenomegaly segmentation using global con- 

volutional kernels and conditional generative adversarial 

networks. In Medical Imaging 2018: Image Processing, 

volume 10574, pages 45–51. SPIE, 2018. 


