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Abstract—Deep learning has gained significant attention in 
recent years for its ability to imitate human abilities, such as 
visual and auditory perception. These algorithms use statistics to 
find patterns in data and have shown promising results in 
various applications. Generative adversarial networks (GANs) 
have emerged as one of the most powerful generative models that 
can produce visually appealing samples. However, GANs suffer 
from several problems, such as mode collapse, non-convergence, 
and training instability. The generator's gradient is eliminated 
when the discriminator is optimal, resulting in slow learning and 
vanishing gradients. In this paper, we review the challenges 
associated with training GANs and the various methods 
proposed to address these issues. Recent research has proposed 
several approaches, including architectural modifications, 
regularization techniques, and alternative loss functions. Despite 
these efforts, the instability problem persists, and no studies to 
date have fully resolved the challenges associated with training 
GANs. Our survey presents a focused analysis of current GAN 
training advancements, with a special emphasis on addressing 
gradient vanishing in medical imaging. We highlight key 
challenges, review optimization techniques to mitigate these 
issues, and propose a framework for future research aimed at 
enhancing GAN stability and interpretability. This work 
contributes to advancing GANs in medical applications, 
improving their performance in generating realistic, high-quality 
medical images. 

Index Terms—Deep Learning, Optimization, Generative Ad- 
versarial Networks, gradient vanishing 

 

I. INTRODUCTION 

A. Research Area Overview 

ANS or Generative Adversarial Networks, a deeper 

learning technique, such as convolutional neural net- 

works, are generative modeling. Generative modeling is an 

unregulated learning task in machine learning, whereby the 

regularities or patterns of inputs are automatically discovered 

or learned so that the model can be used. 

Generate or output new examples from the original dataset 

which could have been plausibly drawn. GANs are a hot sub- 

ject in deep learning research today. Popularity has soared with 

this architecture style, with it’s ability to produce generative 

models that are typically hard to learn. There are a number 

of advantages to using this architecture: it generalizes with 

limited data, conceives new scenes from small datasets, and 

makes simulated data look more realistic. 

Using this new architecture, it’s possible to drastically reduce 

the amount of data needed to complete these tasks. In extreme 

examples, these types of architectures can use 10% of the 

data needed for other types of deep learning problems, GANs 

are a specific type of neural network model in which two 

networks simultaneously are trained, with one aimed at 

generating an image and the other based on discrimination. 

Due to its usefulness to combat domain changes and its 

success in creating new image samples, the opposite training 

scheme has gained popularity in academia and industry. This 

model has provided the most advanced output in various tasks 

of image processing, including text-to-image synthesis, super 

resolution and image-to-image translation. 

The revival of deep learning in computer vision has greatly 

expanded the use of deep learning learning approaches in 

medical imaging. More than 400 papers have been published 

in major conference venues and journals in the field of 

medical imaging. [15]. The strong acceptance of deep learning 

in the medical imaging community is due to its shown ability 

to complement image interpretation and improve image repre- 

sentation and classification. The most recent developments in 

deep learning – GANs – and their possible applications in the 

field of medical imaging have been the most interesting. 

In this survey, we aim to provide a thorough analysis and 

review of existing methods addressing the gradient vanishing 

problem in GANs, particularly in the context of medical 

image processing. 

B. Problem Statement 

When training artificial neural networks with gradient-based 

learning and backpropagation, the problem of vanishing gradi- 

ents is found. In these approaches, each of the weights of the 

neural networks receives an update in proportion to the error 

derivative of the current weight of each iteration. The problem 

is that, in some situations, the scale of the gradient becomes 

smaller and does not change the weight effectiveness. In the 

worst case, the neural network will totally avoid continuing 

training. As an example, typical activation functions, such as 

the hyperbolization tangent function, include gradients (0, 1) 

and chain rule history measurement of the gradients. This mul- 

tiplies N of these small numbers in order to measure gradients 

of the ’front’ layers in an n-layer network, which results in an 

exponential drop in the gradient (error signal) with N while 
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the fore-layers train very slowly. Researchers were initially 

successful with the back-propagation to train supervised, deep, 

neural artificial networks. As activation functions are used for 

larger derivatives, the associated gradient problem risks being 

encountered. 

Gradient-based approaches learn how a parameter value influ- 

ences the network performance by knowing how a slight shift 

in the value of a parameter. If a parameter change results in 

very slight changes in the performance of the network – the 

network simply cannot effectively learn about the parameter, 

which is an issue. Exactly this is what happens in the vanishing 

gradient problem – the network’s output gradient is extremely 

small when compared to parameters in the early layers. It’s 

fantastic to say it doesn’t have a great impact on performance 

even to change the parameter value of the early layers. 

The problem of Vanishing gradient depends on the selection 

of the activation function. Several common Activation 

functions are very nonlinear to squash their input into a very 

limited output range. For instance, sigmoid maps the real 

line number to a ”small” [0, 1] range, particularly with the 

function very flat on most lines. As a result, the input space 

is mapped to a limited degree in big regions. Even a big 

shift in the input is causing minor changes in the output in 

these regions of the input space – so the gradient is small, 

which gets worse as we stack more than one layer of such 

non-linearity. For example, the first layer maps a larger input 

region to a smaller output region that is mapped by the 

second layer in an even smaller region and is mapped by the 

third layer in an even smaller field. This does not alter the 

performance even substantially in the parameters of the first 

layer. This can be avoided by using activation functions that 

don’t ”squashing” the input space in a small area. Rectified 

linear unit that maps x is a common option Maximum to (0,x). 

 

Although the realist image generation GAN has been very 

successful, the training is not easy, the process is known to 

be beslow and volatile. When it is perfect, we are guaranteed 

the loss function L is zero, so that we don’t upgrade with a 

gradient to upgrade the loss when learning iterations. 

When discriminator is perfect, we are guaranteed D(x) = 1, 1 

Fig.1 [1] shows that when the discriminator increases, the 

gradient disappears easily. 

The creation of a GAN therefore faces a dilemma: 

• The generator has no exact feedback and the loss function 

cannot reflect the truth if the discriminator does not act 

correctly. 

• When the discriminator does a great job, the loss gradient 

falls to near zero and the learning gets super slow or even 

jammed. 

This problem obviously makes the GAN training extremely 

difficult. While our research contributes to optimizing the 

GAN algorithm gradient disappearance problem. 

 

In this survey, we delve into the gradient vanishing problem 

in GANs, with a specific focus on medical imaging applica- 

tions. The structure of our paper is designed to guide readers 

through the complexities of this issue as follows: 

 

• The Introduction sets the stage, outlining the relevance 

of GANs in medical imaging and the significance of 

addressing the gradient vanishing problem. 

 
Fig. 1. A 1-10 and 25 epoch DCGAN is preparation. Then a discriminator is 
trained from scratch with the generator fixed and the gradients are calculated 
with the original function of cost. In the best case, the gradient criteria decay 
rapidly, after 4000 iterations with discriminators, at 5 magnitude orders [1]. 

 

 
• In the Related Work section, we delve into existing liter- 

ature, focusing on how various studies have approached 

gradient vanishing in GANs, with a special emphasis on 

applications in medical imaging. 

 

• The Discussion section present two main aspects, Our 

Perspective on the Field which offer a critical analysis 

of the current methodologies addressing gradient vanish- 

ing in GANs and Emerging Trends which identify and 

discuss the latest trends and advancements in the field, 

highlighting their implications for future research. 

 

• Finally, the Conclusion and Future Work section not only 

synthesizes our findings from the review but also outlines 

potential directions for future research. This section aims 

to highlight gaps in the current literature and suggests 

areas where further studies could make significant 

contributions to the development of more robust GANs 

for medical imaging. 

 

This structure is designed to offer a thorough understanding 

of the current state of GAN optimization in medical imaging, 

culminating in a discussion of future research pathways. 

II. RELATED WORK 

A. Deep Learning in Medical imaging 

Kang et al. [17] developed a CNN to detect urinary particles. 

They used state-of-the-art methods such as Faster R-CNN 

and SSD for object detection, and achieved a mean average 

precision (mAP) of 84.1% using PVANet Faster R-CNN. 

However, they faced challenges in detecting cast particles, 
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which are the most valuable but hardest to detect. 

Zhang et al. [31] proposed a deep cancer cell detector 

using Faster R-CNN and circular scanning algorithm (CSA). 

Their hybrid approach achieved high accuracy with precision 

of 0.979, recall of 0.989, and 0.908 AP for a limited 

sample of cell adhesion. 

Du et al. [3] Proposed a PCA-CNN strategy focused 

on the most advanced Leukorrhea microscopic image network 

architecture. They used R-CNN-based cell detecting algo- 

rithms consisting of a two-part extraction algorithms and the 

candidate recognition and position regression. Each sample 

collected 10 field pictures, totaling 5000 collected pictures 

using a microscopic image method. The algorithm is 93.6% 

detection accuracy and 300 ms/image detection time. 

Xiaohui et al. [2] introduced a deep learning algorithm 

that recognizes a visible picture of fecal composition. They 

proposed a new CNN architecture based on Inception v3 and 

the study of principal components (PCA). The pictures were 

taken with a 40x objective lens by a microscope (total of 89 

665 images). The technique can be used with high average 

precision of 90,7% and low time consumption on images of 

various sizes (1200 ms). 

Ranzato el al. [23] have developed a classification scheme 

of 12 particle categories in human urine; 1000 gray images 

in the categories of the dataset and the final test took 90% of 

the images as training images in each class and the remaining 

images as random extract test images. A new function focused 

on ’local jets’ has been described. They can extract informa- 

tion without segmentation from a patch based on the object 

of interest. The classification with the Gaussian classification 

mixture achieves a low error rate of 6.8%. 

suggested a new identification system (Retinanet model 

structure), based on a complete reset-50, FBN and subnet 

classification network. Urine sampling data from 80 patients 

and photographs obtained with the X40 times lens microscope. 

Dataset contains 749 images, of which 135 images containing 

calcium oxalate crystals have been calibrated. The coincidence 

rate of the algorithm between the effects of automatic recog- 

nition and artificial discrimination of the expert is as high as 

74%. However, circumstances may reduce the accuracy of the 

identification as crystal overlap and stratification. 

Qiaoliang et al. [16] suggested an automatic recognition 

approach known as the Reti-nanet model structure that was 

based on a complete neural network and applied to the urine 

cast type identification system. The dataset used is taken out of 

384 patients’ urine routine microscopy data base, jointly devel- 

oped by the Medical Department of Shenzhen Sixth People’s 

Hospital and the Medical Department of Shenzhen University. 

Urine microscopic casts used as a target for detection and 

passes it onto ResNet50 and you can obtain different maps of 

various sizes in the layers of the last feature pyramid network 

(FPN). The test results show that the coincidence rate of 3072 

urine images is 89.4% and only 0.2s for each image. 

 
B. Generative Adversarial Networks(GANs) 

Goodfellow et al. [10] proposed an additional method for the 

estimation of generative models through an opposing mech- 

anism, in which two models were simultaneously developed: 

the generative model G, which captures the distribution of data, 

and the discriminative model D, which estimates the 

likelihood of a sample coming from the training data and not 

G. In contrast with previous modeling framework structures, 

the current framework offers advantages and disadvantages. 

The drawbacks are in particular that Pg(x) is not clearly 

represented, and that during training D should be well syn- 

chronized with G, so that Boltzmann’s negative chains need 

to be modified between learning steps. The advantages are that 

Markov chains are never necessary, only the backprop is used 

to get gradients, no deduction is needed when learning and 

the model can integrate a wide range of functions. 

Zhang et al. [30] proposes an optimized GAN based Hyper- 

spectral classification model for a smooth process of training 

and improved classification, based on ideas of the gradient 

penalty for generative opponents of GAN (PG-GAN) and 

Wasserstein generative network (WGAN-GP). They use the 

PG-GAN training method to render training fluid and use the 

WGAN-GP loss feature to promote training in order to achieve 

convergence and balance. Their layout enhances the GAN- 

based HSI-classification method significantly. 

Zhaoyu et al. [31] implemented a novel in the GAN, 

consisting of one generator G and two discriminators (D1 ,D2) 

in the form of comprehensive CIFAR 10/100 and ImageNet 

dataset experiments to address gradient vanishing, divergence 

mismatching and mode collapse problems. The Spectral Stan- 

dardization (SN) and ResBlock are first implemented in D1 

and D2, concentrating on the vanishing of the gradient. Then, 

in the end half layers of D2 are adopted Scaled Exponential 

Linear Units (SELU) to further solve the problem. 

Nagarajan et al. [21] provided a theoretical study of GAN 

Optimization’s local asymptotic stability and suggested an 

additional regularization concept for the update of the GAN 

Gradient Descending which can provide both the WGAN and 

the traditional GAN with local stability, and demonstrated 

functional commitment to speeding up convergence and to 

resolve mode collapse. They showed that the addition of this 

term contributes to locally stable balances for all GAN classes. 

Nema et al. [22] have suggested a residual cyclic unpaired 

encoder-decoder-network (RescueNet) end-to- end network 

architecture for brain tumor segmenting using residual and 

reflection concepts using unpaired adversarian training in the 

entire tumor segment, followed with core and enhancing brain 

MRI scan areas. It needs fewer training data and is used 

for better segmentation performance on a wide variety of 

test data. For the Output, sensitivity and DICE coefficient 

are implemented, which shows better performance than other 

approaches. 

Xin et.al. [28] presented a study of recent development 

in medical imaging by implementing the adversarial training 

scheme that is very important in the visual community because 

of its ability to produce data without directly modeling the 

density of probabilities. In certain cases it has been proven 
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helpful, such as adapting the domain, increasing the data and 

converting images into an image. In addition to several 

positive GAN utilities, problems continue to be addressed in 

the field of medical imaging. Most works also take 

conventional shallow benchmarks such as MAE, PSNR or 

SSIM for quantitative evaluation in image restoration and 

cross-modality image synthesis. 

Modanwal et.al. [20] proposed two solutions. The first one 

was to incorporate mutual information into the loss 

function. a method that performs intensity normalization and 

learns the noise distribution pattern. The proposed model can 

success- fully learn a bidirectional mapping between MRIs 

produced by different vendors with improved accuracy. The 

second solution to the problem of maintaining the structure of 

the breast is a modification to the discriminator. One 

limitation of their work is that it provides the capability of 

translation using 2D images only. 

Anders et.al. [4] presented a preliminary results showing 

that a 3D progressive growing GAN can be used to 

synthesize MR brain volumes. They used T1-weighted MR 

volumes from the Human Connectome Project (HCP) for 

training 3D GAN. They performed data augmentation by 

applying 10 random 3D rotations to each of the 900 volumes, 

to achieve a total of 9000 training volumes. They based thier 

3D progressive growing GAN (PGAN) on the 2D PGAN 

Tensorflow Implementation, replaced all 2D convolutions 

with 3D convolutions, and added an extra dimension to all 

relevant Tensorflow calls. 

Ying et.al. [29] presented a model to retract CT from the 

two orthogonal X-rays with GAN framework to increase 2D 

(X-rays) to 3D data dimension (CT). They mixed the loss 

of reconstruction , the loss of projection and the loss in the 

GAN. Qualitatively and quantitatively studies have shown that 

biplanar X-rays in the 3D reconstruction technique are superior 

to single-visual X-rays. For future work, the calculation of 

organ size and dose preparation should be included in radiation 

treatments. 

Geng et.al. [9] have developed the method for generating 

fused images images based on the conditional generative ad- 

versarial network (GANs) from one- or few-focus images. This 

method is capable of generating fused images with transparent 

textures and deep field depths. The model is developed to 

learn to map input source images to fused images directly, 

without the need to manually construct complex measurements 

of activity level and fusion rules in conventional ways. In 

future they would like to tackle the challenge by unattended 

expansion of the model to various datasets. 

C. Bayesian Deep Learning 

Maier et al. [19] presented a gentle introduction to deep 

learning in the treatment of theoretical pictures. Medical 

imaging is one of the areas that has been greatly influenced 

by rapid progress in deep learning, particularly in the field 

of image detection and recognition, image segmentation, im- 

age rebuilding, and informational diagnostics. They suggested 

that diagnostic computers should be considered one of the 

most complicated problems in the field of medical image 

processing. Chest radiograph research requires a substantial 

amount of radiological work and is regularly carried out. 

Reliable assistance is also highly desirable to avoid human 

error.Many studies have been reported, including automatic 

cancer evaluation in confocal laser endoscopy of the head and 

neck, deep mammogram research learning, and skin cancer 

classification. Finally, they showed that existing deep networks 

that lead to an immediate decision are not so appropriate for 

more complex diagnoses as evidence cannot be understood. 

Justin et al. [13] presented core fields of study and ap- 

plications for the classification, localization, identification, 

segmentation, and registration of medical images.They also 

innovate approaches, problems, and potential applications. A 

recurrent theme in machine learning is the lack of labelled 

datasets that interrupt workouts and task results. VAEs and 

GANs can avoid the issue of data shortage by creating medical 

synthesis data as generative models. The data imbalance effect 

may also be improved with increased data to produce more 

unusual or irregular data training images, but there is a chance 

of overfitting. They also introduced new fields of research such 

as prognosis, content-based retrieval of images, image report 

generation for subtitles, handling of physical objects by 

LSTMs, and improving learning with things like surgical 

robots. 

Filos et al. [7] introduced a new benchmark for Bayesian 

deep learning, inspired by a real-world diabetic retinopathy 

diagnosis application, which could be used for the scalability 

and efficacy of various uncertainty estimation techniques that 

go beyond RMSE and NLL. Bayesian deep learning provides 

a practise of merging Bayesian theory of probability with 

modern deep learning for quantifying deep models, which is 

called probabilistic modelling inference. It develops and sets 

the necessary baselines for the benchmark, including the drop- 

out, mean field inference, and model assembly of Monte Carlo. 

All methods perform equally well when all data is retained, 

conveying that all models have converged to similar overall 

performance and providing a fair comparison of uncertainty. 

Schlemper et al. [24] investigate the applicability of model 

uncertainty linked to DL-based reconstructions of Bayesian 

DL techniques. They showed that the proposed Bayesians 

perform competitively when the test images are relatively far 

removed from the distribution of training data and outperform 

when the baseline approach is overly parametrized.The dataset 

is made up of UK Biobank cardiac cine MR images. It was 

established that the Bayesian methods had a lower output 

than the baseline networks with cartesian under-sampling (the 

nearest to training distribution). They found that when the 

data was farther from the distribution of training, the Bayesian 

methods performed competitively and that the epistemic and 

aleatoric maps provided showed a correlation with the error 

maps. 

Park et al. [11] proposed a DGP based classification 

method for tumour mutational burden (TMB) prediction from 

histopathology whole slide images (WSIs) in the weakly 

supervised learning setting and provided an efficient inference 
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algorithm to train the model based on Black-box -divergence. 

They evaluated a DGP at each image patch of an image 

and made a final prediction for the image by aggregating all 

the prediction results through mean pooling. They tested the 

method on the TCGA bladder cancer dataset and found that 

in their experiments, the DGP model, no matter the alpha 

value or number of layers, always outperformed 

SVM+PCA. 

Krishnan et al. [14] evaluate the recently proposed model 

Priors with Empirical Bayes using DNN (MOPED) method 

for Bayesian DNNs within the Bayesian Deep Learning 

(BDL) benchmarking framework. They evaluate the method 

on the diabetic retinopathy diagnosis task in BDL-

benchmarks. They benchmark MOPED with mean field 

variational inference on a real-world diabetic retinopathy 

diagnosis task and compare it with state-of-the-art BDL 

techniques. The result was that MOPED-MFVI outperformed 

other state-of-the-art BDL tech- niques in terms of accuracy 

with respect to retained data based on predictive uncertainty. 

Patrick et al.[4] define a deep neural Bayesian (DNN) 

network to predict FreeSurfer segmentations of structural 

MRI volumes, with the objective of increasing the 

FreeSurfer segmentation similarities in minutes and not hours 

and producing useful estimates of uncertainty. They practised 

on a little less than 10,000 SMRIs and obtained about 70 

different data sets. As a result, a new Bayesian DNN was 

substantially better than other methods with a falling spin-

and-drop with learned model uncertainty. This spike- and-

slab method improves segmentation efficiency and output 

uncertainties in comparison to the MAP-DNN method. 

Kuzina et al. [15] suggested a new approach to knowl- 

edge transfer with Deep Weight Pre-implicit pre-distribution 

was also learned from a large multi-sclerosis dataset and 

applied to the tumour network, leading to a better output 

than traditional transfer learning. This method is based on 

Baies’ deep approach and uses an implicit distribution of 

precedence over convolutionary filters. In this sector, there 

are many challenges. One of the most critical is that manual 

division of MRI volumes is very costly, which is required to 

train a supervised model. They observe higher variability in 

prediction accuracy for problems with smaller sample sizes, 

which shrink as the training dataset grows, and the superiority 

of UNet-WDP becomes clearer. They have also shown that 

the proposed approach outperforms both simple and fine-tuned 

models. 

Matias et al. [26] suggested deep image classification sub- 

ensembles, a deep-ensembles approximation where the key 

concept is to ensemble only the output-classed layers rather 

than the entire model with the goal of reducing computational 

time to deduction. They evaluate the proposed method in 

three datasets for image classification: MNIST, CIFAR10, and 

SVHN. And the result shows that With ResNet-20 on the 

CIFAR10 dataset, they obtain speedups up to 1.5–2.5 for 

ResNet-20 on the CIFAR10 dataset over a Deep ensemble 

and speedups of 5–15 for a VGG-like network on the SVHN 

dataset, with a small increase in error. 

Zhang et al. [32] proposed a multi-viewed approach for urine 

cell recognition based on deep, multi-view residual learning to 

overcome certain existing problems, including cell- grey shift 

multiple-view and the loss of natural cell-based knowledge.The 

urine sediment picture taken under a 100x ob- jective lens by 

the Nikon microscope is of image size 64 digits 

480. In the 1550 images, the target composition area is selected 

to be practised. There are a total of 33 elements.To classify 

the tubular cells, epithelium, and crystallination, suffice the 

feature vector of the feature composition.The algorithm is much 

better than SDD, DenseNet, and ResNet. The algorithm has an 

accuracy of 97.15, 95.10, 96.29, 93.08, or 92.06. 

Zheng et al. [33] present a transfer learning method for 

extracting imageing from US renal images to improve the clas- 

sification of ultrasound kidney images, especially in the case of 

pre-trained ”imagenet-caffe-alex,” in diagnosing congenital 

kidney and urinary tract malignancies (CAKUT) in children. 

The dataset includes kidney scans from 50 average people and 

50 patients obtained at Children’s Hospital in Philadelphia. 

They designed SVM classificators on all available left, right, 

and bi-lateral images of the kidneys separately. The classi- 

fication performance assessment was carried out using 10- 

times cross-validation. The region under the ROC (ROC) curve 

suggests that the integration of transfer-learning characteristics 

and conventional imaging could boost the classification of US 

kidney images and the combined benefits (CNN + HOG + 

Geometrical) compared to each algorithm. 

Kang et al. [12] take advantage of the CNN to obtain a 

complete understanding of urine particle characteristics.The 

urinalysis micro-images database contains 6804 annotated 

colour images of 800 x 600, the Faster R-CNN and SSD detec- 

tion methods, two state-of-the art CNN-based object detection 

methods: the faster R-CNN and the more extensive SSD, 

and the multiple scale R-CNN (MS-FCNN) and Trimmed- 

SSD. They got the best mAP (mean average precision) of 

84.1%, which only takes 72 ms per picture when using PvANet 

Faster R-CNN for 7 identifiable categories or urinary sediment 

particles. They also have a 77.2 % best AP for cast particles, 

the most precious but hardest to detect. 

Wacker et al. [27] designed completely convolutionary 

networks with pretrained encoders. They demonstrate that the 

training phase is therefore stabilised, and robust predictions 

can be made. The BraTS ’17 and ’18 benchmarks for training 

data The findings have been the same for the past two years 

and involve 210 patients with high-grade and 75 patients 

with low-grade gliomas. Four forms of MRI are available for 

each patient: T1, T1c (contrast-enhancing), T2, and FLAIR. 

Pretrained model weights and the 3D extension of the ar- 

chitectural framework can be seen as further changes in the 

efficiency of means, medians, and quartiles of the distribution 

of tumour core dice. 

Evan et al. [31] introduced an algorithm to identify and 

locate essential results jointly in chest X-rays (CXR) with 

competitive ratings in contrast to state-of-the-art methodolo- 

gies with a new multi-instance learning (MIL). They include 

binary classification and localization results for three separate 



Informatics Bulletin, Helwan University, Vol 6 Issue 2, July 2024 

 

36 

 

critical findings from three CXR data sets, each with an 

80/20 training/validation split and 1000 CXR images. 

VGG16 has been used to generate 0.89, 0.84, and 0.82 AUCs, 

respectively, for PTX, PNA, and PE. And the mean 

validation AUCs were 

0.96 (CNN), 0.92 (FCN), and 0.93 (MIL) after 5-fold cross 

validation (MIL). Their approach is able to locate and 

classify many results from vital forms, sizes, and locations 

correctly. 

Rewa et al. [25] proposed a theoretical solution for 

purchasing high-resolution (HR) Magnetic Resonance (MR) 

images to obtain low-resolution (LR) images to be processed 

by a super-resolved version using the Super Resolution 

Generative Adversarial Network (SRGAN). They use the 

Prostata diagnosis and PROSTATEx archive data sets, which 

demonstrate that SRGAN can be used to superresolve MR 

images in prosthetic applications. This approach could be 

useful to doctors if a shorter scan period is allowed while a 

clear representation of the prostate is given, such as at the 

apex, with a greater risk of cancer. 

 

In summary, GANs have shown great potential in various 

applications, including image synthesis, image translation, 

and classification. However, GAN training can be challenging 

and requires careful tuning of hyperparameters. Additionally, 

some GAN architectures suffer from mode collapse and 

instability, which can lead to low-quality generated 

images. Therefore, further research is needed to address 

these issues and improve the effectiveness and robustness of 

GANs. 

   

 

III. DISCUSSION 

       In this section, we offer our perspectives on the current 

  state of GAN optimization in medical imaging and outline the 

  emerging trends that are shaping the future of this field. 

A. Our Perspective on the Field 

      Based on our extensive review, we observe that the domain 

of GAN optimization in medical imaging is rapidly evolving 

yet faces significant challenges. The persistent issues of gra- 

dient vanishing, mode collapse, and divergence mismatching 

underline the need for innovative solutions. Our stance is that 

future breakthroughs will likely stem from interdisciplinary 

approaches. By integrating insights from fields like deep learn- 

ing, computational neuroscience, and advanced optimization 

techniques, more effective and robust GAN models can be 

developed for medical imaging applications. This multidisci- 

plinary approach could pave the way for models that not only 

perform well but are also interpretable and reliable in clinical 

settings. 

B. Emerging Trends 

       Recent trends in the field point towards a more specialized 

and application-specific focus in GAN development. One 

notable trend is the application of reinforcement learning 

techniques to fine-tune GAN training, which shows promise 

in addressing instability issues. Another emerging direction 

is the incorporation of explainable AI (XAI) principles into 

GAN models. This integration aims to make GANs more 

transparent and accountable, a crucial step for gaining trust 

and acceptance in medical applications. Furthermore, there 

is a growing emphasis on unsupervised and semi-supervised 

learning paradigms in GANs, which could revolutionize the 

way medical images are processed and analyzed, especially 

in scenarios where annotated data is scarce. 

 

       In conclusion, while the field of GAN optimization in 

medical imaging is fraught with challenges, it is also ripe with 

opportunities for innovation and growth. The emerging trends 

and our perspective underscore the dynamic nature of this 

field and its potential to significantly impact medical imaging 

technology. 

 

IV. CONCLUSION AND FUTURE WORK 

     In this survey, we have provided a comprehensive review 

of deep learning algorithms in medical imaging, focusing 

specifically on Generative Adversarial Networks (GANs) and 

their optimization challenges. Our examination revealed that 

while there has been significant progress in addressing issues 

like gradient vanishing, divergence mismatching, and mode 

collapse, a definitive solution to these problems remains elu- 

sive. Training GANs efficiently and reliably continues to be 

a challenge, with issues like vanishing or exploding gradients 

still prevalent. 

The importance of this research lies in its potential im- 

pact on the field of medical imaging. As GANs become 

increasingly integral to medical image analysis, resolving these 

training challenges becomes crucial. Our survey highlights 

not only the current state of research but also points out 

the gaps and limitations in existing methods, as noted by 

various studies. This understanding is vital for guiding future 

research efforts. Looking ahead, it is clear that further work is 

needed to develop more robust optimization techniques. Future 

research should focus on innovating and refining methods to 

train GAN models more effectively, with the ultimate goal of 

overcoming the persistent problem of gradient vanishing. Our 

survey underscores the importance of this endeavor and aims 

to inspire continued exploration and advancement in this area. 
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