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Abstract—Globally, an estimated 2.4 billion people live with 
health conditions that may benefit from rehabilitation, yet there 
is a significant shortage of skilled rehabilitation practitioners, 
particularly in low- and middle-income countries, with only 10 
per 1 million population according to World Health Organi- 
zation(WHO). The global demand for rehabilitation services, 
exacerbated by the COVID-19 pandemic, underscores the need 
for innovative solutions to improve accessibility and efficiency. In- 
stead of increasing the number of physiotherapists, This research 
focuses on enhancing physiotherapist productivity by monitoring 
more patients simultaneously through home-based rehabilitation. 
This study investigates the integration of Human-Computer 
Interaction (HCI), computer vision, and sensor technologies to 
transform physical therapy. Key challenges include ensuring 
model generalizability, various data acquisition sensors, and over- 
coming barriers to real-world implementation. A comprehensive 
framework is proposed for home-based rehabilitation, utilizing 
HCI, computer vision, and sensor technologies to automate 
exercise assessment and classification. This framework aims to 
enable personalized rehabilitation programs and alleviate the 
strain on healthcare systems. 

Index Terms—Rehabilitation, Kinect, RGB, Skeleton-based, 
Machine Learning, Transfer Learning, Deep Learning, Fusion, 
Ensemble Learning. 

 

 

I. INTRODUCTION 

In recent years, the convergence of Human-Computer In- 

teraction (HCI), computer vision, and sensor technologies has 

emerged as a transformative force within the realm of physical 

therapy [1]–[4]. This interdisciplinary fusion is driven by the 

escalating global need for innovative rehabilitation services, 

underscored by the World Health Organization’s report that 

nearly a third of the world’s population could benefit from 

such interventions [5]. The advent of the COVID-19 pandemic 

has further accentuated this demand, highlighting the critical 

role of accessible, personalized, and efficient rehabilitation in 

supporting the world’s aging population and those recovering 

from illnesses or injuries. 

Rehabilitation exercises are pivotal in enhancing physical 

functionality and well-being, enabling individuals to return 

to their daily routines [6]. Traditional approaches to reha- 

bilitation, however, grapple with challenges in accessibility, 

personalization, and patient engagement, exacerbated by a 

global shortage of skilled practitioners, especially in resource- 

limited settings [7], [8]. These challenges underscore the press- 

ing necessity for innovative, technology-driven solutions to 

augment the effectiveness and reach of rehabilitation services. 

This survey delves into the utilization of computer vision 

and sensor technologies to revolutionize physical therapy. By 

harnessing the power of advanced deep learning techniques 

and innovative sensor applications, this research explores 

automated frameworks for the assessment and classification of 

rehabilitation exercises. Employing cutting-edge technologies, 

such as Kinect cameras and sophisticated algorithms like 

Convolutional Neural Networks (CNNs) and Long Short- 

Term Memory (LSTM) networks [9]–[13], the study aims 

to facilitate the creation of customized treatment plans and 

real-time monitoring of patient progress. These technological 

advancements promise to elevate patient engagement, improve 

clinical outcomes, and alleviate the logistical and financial bur- 

dens associated with traditional rehabilitation methods [14]– 

[17]. 

Furthermore, the integration of these digital technologies 

into home-based rehabilitation represents a paradigm shift 

towards more personalized, accessible, and efficient health- 

care solutions [18]–[20]. This transition is not only in line 

with the Sustainable Development Goals, particularly those 

focusing on health and well-being, but also paves the way 

for enhancing global health outcomes and accessibility to 

crucial rehabilitation services [21], [22]. The development 

of novel frameworks and models proposed in this research 

holds the potential for integration into mobile applications, 

allowing patients to perform rehabilitative exercises from their 

homes. This approach addresses both the risk of physical visits 

during the pandemic and the acute shortage of physiotherapists 

worldwide. 

Through a comprehensive examination of the intersection 

between HCI, computer vision, sensor technologies, and phys- 

ical therapy, this thesis aims to forge new pathways in re- 

habilitating care. By advancing the classification, assessment, 

and personalization of physical therapy practices through these 

technologies, the research contributes to a broader vision of 

achieving more effective, personalized, and accessible rehabil- 

itation services globally. 
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Fig. 1. Computer Vision Approaches in Physical Therapy 

 

This manuscript offers a detailed exploration of computer 

vision’s role in psychology across eight sections, covering 

data collection methods, key datasets, feature extraction, and 

various machine learning approaches. Section II outlines com- 

puter vision’s applications in psychology. Section III examines 

data acquisition techniques and the sensors used. Section IV 

reviews essential benchmark datasets. Section V discusses 

feature extraction methods. Section VI presents machine learn- 

ing strategies, including classical approaches, deep learning, 

transfer learning, ensemble learning, and transformers. Sec- 

tion VII identifies challenges and future research directions. 

Section VIII discusses key insights, and Section IX concludes 

the survey, weaving together the diverse topics explored. 

 

II. PHYSICAL REHABILITATION APPLICATION 

Liao et. al [23] conducted a survey on vision based ap- 

proaches in psychology rehabilitation. Various computer vision 

approaches were applied to contribute in physical rehabilita- 

tion and the assessment of the quality of the movement. 

Figure 1 provides a structured overview of computer vision- 

based approaches in the field of psychology, with a particu- 

lar focus on two main application areas: rehabilitation and 

assessment. In rehabilitation, the framework is divided into 

virtual and direct methods. Virtual rehabilitation encompasses 

skeleton-based and non-skeleton-based approaches, as well as 

automated assessment tools that leverage computer vision to 

evaluate patients’ movements and progress. Direct rehabili- 

tation methods, on the other hand, utilize pure vision-based 

techniques or multi-modal approaches, which might combine 

visual data with other sensor input for a comprehensive 

analysis. 

The assessment domain is further bifurcated into compari- 

son, categorization, and scoring methodologies. Comparison 

involves kinematics-based modeling, statistical models, and 

stochastic methods to evaluate and contrast different move- 

ments or postures. Categorization employs rule-based systems 

as well as statistical and stochastic algorithms to classify 

psychological states or behaviors. Lastly, the scoring segment 

illustrates the use of author-proposed algorithms alongside 

clinical standards to quantify the outcomes of psychological 

assessments. 

Figure 1 serves as a guide to the spectrum of computer 

vision applications in psychology, highlighting how different 

methodologies can be applied to the analysis, treatment, and 

evaluation of psychological and rehabilitative processes. Each 

branch and sub-branch represents a specific set of techniques, 

reflecting the diverse and intricate ways in which computer 

vision can contribute to advancements in psychological prac- 

tices. 

This survey focus on rehabilitation approaches. Rehabilita- 

tion approaches can be further divided into virtual and direct 

rehabilitation. 

1) Virtual Rehabilitation: In virtual rehabilitation, a pa- 

tient’s performance in a virtual world is assessed rather 

than directly assessing a patient’s physical performance. This 

includes an avatar performing tasks in a virtual world and 

the use of serious games for rehabilitation. Here, subjects are 

required to perform activities in a virtual world through real 

world movements as shown in Figure 2. 

 

 
Fig. 2. Virtual Rehabilitation: A patient engages in therapeutic exercises 
within a virtual reality environment, guided by an avatar in a gamified 
setting, showcasing the seamless integration of physical movement and digital 
technology. 

 

2) Direct Rehabilitation: In Direct Rehabilitation systems, 

users are guided by a web-based interface to perform rehabil- 

itation exercises, while their movements are directly tracked 

through vision-based sensor. In this case, physical performance 

of patient is measured instead of their avatar’s performance 
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or their ability to complete tasks in a virtual world. Patient 

assessment may be inbuilt or may require clinicians as shown 

in Figure 3. 

 

 
Fig. 3. Direct Rehabilitation: A patient performs rehabilitative exercises under 
the guidance of a computer vision system, with real-time movement analysis 
projected on a digital screen, while a physiotherapist monitors the progress 
on a tablet. 

 

Figure 4 illustrates various stages of a general AI-driven dig- 

ital Rehab program. digital Rehab programs typically include 

a clinical assessment and clinician meetings with patients vir- 

tually or in person, and then the prescription of individualized 

digital Rehab programs. 

This framework consist of multiple phases, starting with 

patient performing exercises at home in persistence of a sensor. 

The sensor type will be discussed in data acquisition phase 

(Section III), The data are then processed (Section V repre- 

sents the preprocessing phase followed by feature extraction). 

Then, the extracted features are fed into Artificial Intelligence 

models which perform tasks as classification whether the user 

performed which exercise and if he/she performed it correctly 

or not. or can even evaluate the quality of the movement 

and generate progress reports which are then sent back to the 

clinicians to monitor patient status. 

 

III. DATA ACQUISITION 

Data Acquisition is considered the first phase in human 

activity recognition [24]. The section on data acquisition 

in human activity recognition is crucial for understanding 

how information about human behavior is collected. Different 

sensor modalities and technologies are employed to capture 

relevant data. Below is a comprehensive overview of data 

acquisition methods, including sensor-based and camera-based 

approaches. In the realm of human activity recognition, a wide 

array of sensor modalities and technologies are deployed to 

capture the multifaceted aspects of human movements and 

behaviors, each offering unique advantages and challenges. A 

comprehensive understanding of these data acquisition meth- 

ods is essential for designing systems that are both accurate 

and practical for real-world applications. The section is further 

divided into two sub-sections: Sensor-based and Camera- 

based. 

 

A. Sensor-Based 

Numerous types of sensors have been utilized for acquiring 

movement data. The sub-section is further divided into 3 

categories based on the type of the sensor: Inertial Sensors, 

Physiological Sensors and Location-based Sensors. 

1) Inertial Sensors: Inertial Measurement Units (IMUs) 

represent a cornerstone in the landscape of motion detection 

and analysis, with accelerometers, gyroscopes, and magne- 

tometers serving as their critical components. These sensors, 

either used individually or combined, offer a nuanced under- 

standing of human movement by capturing various aspects of 

physical dynamics. The synergy of data they provide forms 

the backbone of numerous applications, from fitness tracking 

and sports analytics to rehabilitation and gesture recognition. 

• Accelerometers: Measure acceleration and provide infor- 

mation about changes in velocity. Commonly used for 

recognizing various physical activities, such as walking, 

running, or gestures, by capturing changes in linear 

acceleration. [25]–[28]. 

• Gyroscopes: Measure angular velocity, aiding in deter- 

mining the orientation and rotation of body parts. Com- 

monly used for tracking rotational movements, like the 

twist of a wrist or the turn of a head, complementing 

accelerometer data [27]–[29]. 

• Magnetometers: Measure the strength and direction of 

magnetic fields, useful for compass-like orientation. How- 

ever, It’s usually used alongside accelerometer and gyro- 

scope for Human Activity Recognition (HAR) tasks [27], 

[28] 

2) Physiological Sensors: 

• Electrocardiography (ECG or EKG): Measures electrical 

activity of the heart, providing insights into the user’s 

cardiac response [30], [31]. 

• Electromyography (EMG): Records muscle activity and 

can be used to identify specific gestures or motions [32], 

[33]. 

• Galvanic Skin Response (GSR): Measures changes in 

skin conductance due to emotional or physiological 

arousal [34], [35]. 

3) Location-based Sensors: 

• Global Positioning System (GPS) : Provides geo-spatial 

coordinates, enabling the tracking of outdoor activities 

and movement patterns [36], [37]. 

 

B. Camera-Based Data Acquisition 

Also known as Skeleton-Based Cameras, this category in- 

volves the use of different cameras specifically designed to 

detect and track the human skeleton. The information derived 

from these cameras, capturing the skeletal structure, is sub- 

sequently employed for activity or exercise recognition. This 

section explores various types of cameras that fall under the 

Skeleton-Based category, highlighting their role in extracting 

essential skeletal data for applications such as human activity 

recognition. 

1) RGB Cameras: Also known as Color Cameras, RGB 

cameras capture visual information in the form of color 

images, which are useful for recognizing activities based on 

visual cues. Additional Step is needed for extracting body 

joints when using RGB cameras. Nevertheless, additional 

processing is essential to extract skeletal joints. Two viable 

approaches for using RGB cameras as a primary sensor are 

OpenPose [38] and BlazePose [39]. OpenPose and BlazePose 
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Fig. 4. A conceptual diagram depicting various stages of AI-driven digital Rehab platforms. 

 

are widely adopted solutions for extracting skeletal joints from 

the human body. BlazePose offers a significantly faster runtime 

than OpenPose [40], making it suitable for diverse applications 

such as movement pre-screening and activity classification. 

BlazePose, functioning as a lightweight and efficient (CNN) 

model, excels in real-time pose estimation by predicting the 

3D pose of an individual from a single image or video frame. 

The model employs CNNs to extract features from input 

images, followed by regression layers to predict the location 

of body key points. On the other hand, MediaPipe [41], a 

framework based on the BlazePose model, is better suited 

for constructing real-time machine-learning pipelines. RGB 

cameras have utilized for previous researches in the real of 

Human Activity Recognition (HAR) [42]–[44] specially in 

exercise classification [45] 

2) Depth Cameras: Depth cameras can be implemented 

through various technologies. Two common types are: 

• Time-of-Flight (ToF) Cameras: 

Also known as depth cameras, ToF cameras measure the 

time it takes for light to travel from the camera to the 

subject, providing depth information. Examples include 

the Microsoft Kinect, Intel RealSense D series, and Azure 

Kinect [46]–[48]. 

• Infrared Cameras 

Infrared cameras detect heat radiation, enabling the cap- 

ture of thermal images. This is particularly useful for 

tracking human presence and activity in low-light condi- 

tions. Examples include the FLIR ONE attachment for 

smartphones and specialized thermal imaging cameras 

like the FLIR Axiom Series [49], [50]. 

The utilization of camera-based systems proves particularly 

advantageous in the realm of physical rehabilitation exercises. 

This is attributed to the heightened accuracy facilitated by the 

precise capture of orientation and spatio-temporal coordinates 

of various body joints. This detailed information plays a 

critical role in the effective monitoring and classification of 

physical exercises within the rehabilitation context. 

The adoption of RGB cameras in physical rehabilitation 

presents a set of limitations that are pivotal to consider. Real- 

time human pose estimation, a critical component of direct 

rehabilitation applications, can be effectively facilitated by 

solutions like MediaPipe. However, MediaPipe is limited by its 

ability to detect only a single human pose at a time, posing a 

significant constraint in environments where multiple individu- 

als need to be tracked simultaneously. Alternative frameworks, 

such as YOLO or BlazePose, extend this capability to multiple 

human figures, yet they often encounter trade-offs in terms 

of processing speed. The reduced frame rate inherent to 

these models can impair their real-time applicability, a non- 

negotiable requirement for feedback-sensitive rehabilitative 

scenarios. 

Transitioning to a Kinect camera may circumvent these 

issues, offering robust multi-person tracking at higher frame 

rates, thereby enabling more seamless real-time interaction. 

Nevertheless, the implementation of a Kinect system intro- 

duces additional economic considerations due to the cost 

associated with the hardware. For rehabilitation centers and 

patients alike, this investment may represent a significant 

financial burden. This highlights the broader dilemma in the 

field of digital rehabilitation: the balance between technolog- 

ical capability and accessibility. Further research is necessary 

to optimize the trade-offs between cost, performance, and 

real-time processing capabilities to ensure that the benefits of 

advanced HCI technologies in rehabilitation can be realized 

universally. 

When comparing the use of cameras and inertial sensors 

for human activity recognition, both modalities have dis- 

tinct advantages and limitations. Cameras, particularly RGB 

cameras, provide rich visual information that can capture 

detailed features of human actions and interactions with the 

environment, making them effective in recognizing complex 

activities and gestures. However, cameras require a clear line 

of sight and sufficient lighting conditions, which can limit their 

effectiveness in certain environments or during nighttime, and 

privacy concerns may arise due to their intrusive nature, espe- 

cially in private or sensitive settings. On the other hand, inertial 

sensors, such as accelerometers and gyroscopes, are wearable 

and unobtrusive, making them suitable for continuous monitor- 

ing of human activities in various environments, particularly 

in scenarios where camera-based systems are impractical or 

invasive, such as in sports training or healthcare applications. 

However, inertial sensors have limitations in capturing detailed 

visual information, and their accuracy can be affected by 

sensor placement and orientation, limiting their ability to 
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TABLE I 
COMPARISON OF DATASETS FOR PHYSICAL REHABILITATION 

 
Dataset Name Exercise Subjects Number of Activities Details Sensor/Data 

SPHERE-Staircase2014 [53] Walking-up stairs 12 2 48 sequences, normal and abnormal gait Kinect/Open NI skeleton 
SPHERE-Walking2015 [54] Walking 10 2 40 sequences, normal and abnormal gait Kinect/Kinect SDK, OpenNI SDK skeleton 
SPHERE-SitStand2015 [55] Sit to stand 10 2 109 sequences, restricted knee, hip, freezing Kinect/Kinect SDK, OpenNI SDK skeleton 
TRSP [56] Stroke, compensatory movement 19 4 4 compensatory movements, frame-by-frame label Kinect, Haptic robot/Kinect SDK skeleton 
Parkinson’s pose estimation [57] PD, LID, UPDRS assessment tasks 9 3 526 sequences, PD, LID patients, 4 UPDRS assessment tasks RGB Camera/CPM [58] skeleton 
UI-PRMD [52] General rehabilitation 10 10 10 exercises, 10 repetitions Kinect Vicon/Kinect SDK skeleton 
KIMORE Dataset [59] Stroke, PD, back pain exercises 78 5 5 exercises, 5 repetitions Kinect/RGB, depth, skeleton 
AHA-3D Dataset [60] Senior lower body fitness 21 4 4 exercises Kinect/RGB, depth, skeleton 
UTD-MHAD [61] Multiple activities of daily living (ADLs) 8 27 27 different actions, 4 repetitions Depth Camera (Kinect), Inertial Sensors (Accelerometers, gyroscopes) 
UAV-Human [62] General activities 119 155  RGB /Azure DK Depth / 3D joints 
HARTH [63] General activities 22 12 Two Accelerometers Accelerometer 
PAMP2 [64] Walking, Cycling, Playing soccer, and more 9 18  Accelerometer, Gyroscope, Temperature, Heart Rate Monitor 

HHAR [65] Biking, Sitting, Standing, Walking, Stair Up and Stair down 9 6  Accelerometer and gyroscopes 

 

recognize complex activities that involve subtle movements or 

interactions with the environment. In summary, while cameras 

excel in capturing detailed visual information for human 

activity recognition, they may be limited by environmental 

factors and privacy concerns, whereas inertial sensors offer 

a wearable and unobtrusive solution but may lack the visual 

context and detailed information provided by cameras. The 

choice between the two modalities depends on the specific 

requirements of the application, balancing between accuracy, 

privacy, and practicality. 

 

IV. BENCH-MARKING DATASETS 

In this section, we delve into the methodologies employed 

for data acquisition and the structural characteristics of se- 

lected datasets crucial for human activity recognition in the 

realm of physical rehabilitation. Each dataset is scrutinized 

with regard to its distinctive features, strengths, weaknesses, 

limitations, and prevalent applications. 

Here, most authors have used their own small datasets and 

thus, it is difficult to ascertain their generalisability. Owing to 

availability of skeleton positions, kinematic parameters have 

been used for performing statistical comparisons like ANOVA 

analysis. Small datasets are not sufficient for the application 

of Deep Learning (DL) algorithms but other algorithms such 

as HMM, DTW could have been used for comparing tem- 

poral sequences. Joint angle comparison is good for posture 

recognition. However, time sequence comparison algorithms 

are essential for comparing joint angle and/or joint position 

trajectories. 

In recent times, Generative Adversarial Networks (GANs) 

have been used to generate synthetic data including, but not 

limited to, human faces and human poses. Li et al. [51] used 

the UI-PMRD dataset [52] to generate a synthetic dataset 

of incorrect human activities. Four different GANs models 

were trained, which included two Deep Convolutional GANs 

(DCGAN), a Wasserstein GAN and a Recurrent GAN. A 

1D Convolutional Neural Network (CNN) was trained as 

discriminator with the GANs and a soft-metric based on 

absolute differences was used for evaluating the performance 

of GANs. Modelling or replicating kinematic data through 

GAN is a major contribution of this article, although it aims 

to classify physical movements. 

The table presented in Table I provides a concise summary 

of the most frequently employed datasets within the field of 

physical rehabilitation exercises. 

• SPHERE-Staircase2014 Focused on stair climbing, this 

dataset captures gait patterns during ascent using RGB 

and depth sensors [53]. Comprising 48 sequences from 

12 subjects, the dataset offers valuable insights into reha- 

bilitation scenarios. The data is formatted as sequences 

of frames, where each frame includes color and depth 

information. 

• SPHERE-Walking2015 Specializing in walking activities, 

this dataset employs Kinect and OpenNI SDK for RGB 

and depth data acquisition [54]. With 40 sequences from 

10 subjects, it contributes to the comprehension of diverse 

walking patterns. Data is structured as sequential frames, 

integrating color and depth information. 

• SPHERE-SitStand2015 Targeting sit-to-stand move- 

ments, this dataset employs Kinect and OpenNI SDK 

[55]. It features 109 sequences involving 10 individuals 

with specific conditions. The dataset’s structure encom- 

passes sequential frames, incorporating color and depth 

information relevant to rehabilitation scenarios. 

• TRSP Tailored for stroke and compensatory movement 

analysis, TRSP integrates Kinect and Haptic robot sensors 

[56]. The dataset includes 10 sequences with 10 healthy 

subjects and 10 stroke patients, structured as sequential 

frames capturing RGB and depth information. 

• Parkinson’s Pose Estimation Centered on Parkinson Dis- 

ease assessments, this dataset utilizes RGB cameras for 

pose estimation [57]. Involving Parkinson Disease and 

Levodopa-induced Dyskinesia patients in 526 sequences 

for UPDRS assessment tasks, the dataset is characterized 

by sequential frames capturing essential pose-related data. 

• UI-PRMD address general rehabilitation exercises, UI- 

PRMD employs Kinect Vicon sensors [52]. With 10 

subjects performing 10 exercises for 10 repetitions, the 

dataset’s sequential frames encompass RGB and skeletal 

information, offering versatility in rehabilitation scenar- 

ios. 

• KIMORE Dataset Catering to stroke, Parkinson Disease, 

and back pain exercises, KIMORE uses Kinect sensors 

for RGB, depth, and skeletal data [59]. The dataset 

includes 78 subjects performing exercises structured as 

sequential frames, providing diverse insights into targeted 

impairments. 

• AHA-3D Dataset Focused on senior lower body fitness, 

AHA-3D employs Kinect for RGB, depth, and skeletal 

data [60]. With 21 subjects performing exercises, the 

dataset’s sequential frames capture nuanced movements, 

contributing to the understanding of elderly fitness. 

• UTD-MHAD Encompassing multiple ADLs, UTD- 

MHAD utilizes depth cameras (Kinect) and inertial sen- 
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sors (accelerometers, gyroscopes) [61]. The dataset in- 

volves eight subjects performing 27 actions, capturing 

diverse activities and sensor modalities in sequential 

frames. The relatively small subject pool and nuanced 

movement capture present notable challenges for analy- 

sis. challenges for analysis. 

These datasets collectively contribute to the understanding 

of rehabilitation strategies, each offering specific insights and 

considerations. Researchers should carefully select datasets 

aligned with their study objectives, weighing factors such as 

dataset size, diversity, and the targeted rehabilitation scenarios. 

 

V. FEATURE EXTRACTION 

Feature extraction is a pivotal step in human activity recog- 

nition, involving the conversion of raw sensor or camera 

data into a representation that captures essential patterns for 

analysis. Various methodologies exist for feature extraction, 

each with distinct advantages and applications. 

The utilization of numeric data, whether in one-dimensional 

(1D) or two-dimensional (2D) formats, is fundamental to the 

feature extraction process in human activity recognition. In 

the context of 1D data, such as temporal sequences from 

sensors or joint angles, numerical representations are derived 

through techniques encompassing statistical measures and sig- 

nal processing. These 1D numeric features effectively capture 

temporal patterns and variations critical for comprehending 

sequential activities. 

Conversely, in the realm of image-based data, typically 

represented in a 2D format like video frames or depth maps, 

feature extraction employs methods like convolutional neural 

networks (CNNs). These CNNs autonomously acquire hierar- 

chical features and spatial relationships within the visual input, 

proving highly effective in capturing spatial dependencies 

and discerning patterns in human activities within the visual 

domain. It is noteworthy that 2D data serves a dual purpose, 

being utilized as numeric data for recurrent neural networks 

(RNNs), and it can also be transformed into images for tasks 

related to image classification. The integration of both 1D 

and 2D numeric representations in feature extraction ensures 

a comprehensive understanding of the diverse aspects intrinsic 

to human activity data. 

In this section, we delve into the diverse approaches em- 

ployed for feature extraction, data representation methods, 

spanning conventional statistical measures, signal processing 

methods, and domain-specific descriptors. Subsequently, we 

explore the transformative impact of deep learning, partic- 

ularly through Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs), as well as attention- 

based feature extraction methods facilitated by transformer 

architectures. Understanding the nuances of these methodolo- 

gies is crucial for researchers and practitioners seeking to 

optimize feature extraction strategies for robust and context- 

aware human activity recognition. 

Table II provides a Comprehensive review of different 

feature extraction techniques for Time-Series Data specially 

in the domain of Human Activity Recognition (HAR). 

A. 1D Approaches 

Traditional or hand-crafted features are manually designed 

representations that encapsulate specific characteristics of the 

input data usually used to convert 2D data to 1D. These 

features are often tailored to capture domain-specific knowl- 

edge and are carefully selected based on the requirements 

of the recognition task. Examples of hand-crafted features 

include statistical measures, signal processing techniques, and 

domain-specific descriptors. While these methods provide in- 

terpretability, they may lack adaptability to diverse datasets 

and may require expert domain knowledge for effective design. 

1) Statistical Measures: Numerous statistical methods are 

used to represent 2D data into 1D vector. Table II lists some of 

the most popular statistical methods and their equations [24]. 

 

B. 2D Approaches 

1) Signal Processing: A spectrum of mathematical methods 

is employed for data representation, each tailored to reveal 

specific nuances within datasets. The Fourier Transform de- 

composes signals into sinusoidal functions, elucidating their 

inherent frequency components. Short-Time Fourier Transform 

(STFT) [66] refines this analysis by incorporating temporal 

considerations. Discrete Wavelet Transform (DWT) [67] ex- 

cels in extracting both frequency and temporal information, 

particularly suited for non-stationary signals. Principal Com- 

ponent Analysis (PCA) [68] serves as potent dimensionality 

reduction techniques, unveiling fundamental structures within 

data. T-distributed Stochastic Neighbor Embedding (t-SNE) 

[69] crafts lower-dimensional representations for exploratory 

data analysis. Non-negative Matrix Factorization (NMF) [70] 

identifies parts-based features, while Kernel Principal Compo- 

nent Analysis (KPCA) [71] extends PCA to nonlinear rela- 

tionships. Mel-Frequency Cepstral Coefficients (MFCC) [72] 

and the Gabor Transform [73] are specialized techniques adept 

at capturing frequency content in sound signals and local- 

ized components in signals, respectively. Continuous Wavelet 

Transform (CWT) [74] stands out for its simultaneous analysis 

of signals in both time and frequency domains, offering 

insights into the time-varying frequency components of a 

signal. Collectively, these methods comprise a comprehensive 

toolkit for researchers and practitioners aiming to comprehend 

diverse data structures across various domains. 

• Fourier Transform: It is widely used to transform time- 

domain signals into their frequency components, helping 

in the analysis of the frequency characteristics of the sig- 

nals. The FT is particularly useful for stationary signals 

[75]–[80]. 

• Wavelet Transform (WT): This technique provides time 

and frequency information simultaneously, making it suit- 

able for analyzing non-stationary signals. It has been 

widely used in HAR to extract features from raw data 

due to its ability to capture both high-frequency and low- 

frequency components of a signal [81]–[87]. 

• Principal Component Analysis (PCA): PCA is a statistical 

technique used to reduce the dimensionality of the dataset 

while retaining most of the variability in the data. It is 
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TABLE II: COMPREHENSIVE FEATURE EXTRACTION TECHNIQUES FOR TIME-SERIES DATA USED IN HUMAN ACTIVITY RECOGNITION (HAR) 
 

Method Sub-Method Equation/Description 

Statistical Features Mean 
µ =  

1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 

Median 𝑚𝑒𝑑𝑖𝑎𝑛(𝑆1, 𝑆2, . . 𝑆𝑛) 

Minimum 𝑚𝑖𝑛(𝑆1, 𝑆2, . . 𝑆𝑛) 

Maximum 𝑚𝑎𝑥(𝑆1, 𝑆2, . . 𝑆𝑛) 

Coefficients of Variation 𝜎 𝜇⁄  

Percentile 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑆, 𝑝) = (1 − 𝑓)𝑆𝑘 + 𝑓𝑘+1 

Peak-to-Peak Amplitude 𝑚𝑎𝑥(𝑆) − min (𝑆) 

Interquartile Range (IQR) Q3 – Q1, difference between the third and first quartiles, percentile (S,75) – percentile (S,25) 

Median Crossings Number of times the signal crosses its median 

Skewness 1

𝑛𝜎3
∑(𝑆𝑖 − 𝜇𝑠)3

𝑛

𝑖=1

 

Kurtosis 1

𝑛𝜎4
∑(𝑆𝑖 − 𝜇𝑠)4

𝑛

𝑖=1

 

Signal Power ∑ 𝑆𝑖
2

𝑛

𝑖=1

 

Root Mean Square (RMS) 
√

1

𝑛
∑ 𝑆𝑖

2

𝑛

𝑖=1

 

Peak Intensity 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 𝑝𝑒𝑎𝑘𝑘𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑡𝑖𝑚𝑒 

Pearson’s Correlation Coefficient 𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑥𝜎𝑦

 𝑤ℎ𝑒𝑟𝑒 𝑐𝑜𝑣 𝑖𝑠 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

Inter-axis Cross-correlation ∑ (𝑎𝑖 − 𝜇𝑎)(𝑏𝑖 − 𝜇𝑏)𝑛
𝑖=1

√∑ (𝑎𝑖 − 𝜇𝑎)2 ∑ (𝑏𝑖 − 𝜇𝑏)2𝑛
𝑖=1

𝑛
𝑖=1

 

Time-domain Features Autocorrelation 𝑅(𝑘) =  
1

(𝑛 − 𝑘)𝜎2
∑(𝑆𝑖 − 𝜇)

𝑛

𝑖=1

(𝑆𝑖+𝑘 − 𝜇)√𝑘 

Trapezoidal Numerical Integration 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 𝑡𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑𝑠 

Signal Magnitude Area 1

𝑛
∑(|𝑥𝑖| + |𝑦𝑖| + |𝑧𝑖|)

𝑛

𝑖=1

 

Signal Vector Magnitude 
√

1

𝑛
∑(𝑥𝑖

2 + 𝑦𝑖
2 + 𝑧𝑖

2)

𝑛

𝑖=1

 

Frequency-domain Features Power Spectral Density 1

𝑛 − 1
∑ (𝑆𝑖  𝑐𝑜𝑠 (

2 𝜋𝑓𝑖

𝑛
))

2

+ (𝑆𝑖  𝑠𝑖𝑛 (
2𝜋𝑓𝑖

𝑛
)

2𝑛

𝑖=1

 

 

Fourier Transform ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞

 

 

Time-frequency Features Continuous Wavelet Transform (CWT) 1

√|𝑠|
∫ 𝒳(𝑡)𝜓 ∗  (

𝑡 − 𝜏

𝑠
) 𝑑𝑡

∞

−∞

 

  

Time-domain Features Zero-Crossing Rate 1

𝑇 − 1
∑ |𝑠𝑔𝑛(𝑥𝑖 − 1)|

𝑇−1

𝑖=1

 

Entropy-based Features Approximate Entropy 𝜙𝑚(𝑟)  − 𝜙𝑚−1(𝑟) 

Sample Entropy −𝑙𝑛
𝐴

𝐵
 

Spectral Entropy − ∑ 𝑃(𝑓𝑖)𝑙𝑛𝑃(𝑓𝑖)

𝑖

 

Others Pitch Angle 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑥1

√𝑦1
2 + 𝑧1

2
) 

Roll Angle 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑦1

√𝑥1
2 + 𝑧1

2
) 

often used in HAR to reduce the complexity of the data 

before classification [88]–[90]. 

• Sensor Fusion and Feature Fusion: Combining data from 

multiple sensors or the features extracted from these data 

using techniques like concatenation or more complex 

fusion methods can enhance the recognition performance 

by providing a more comprehensive view of the activities 

[91]–[95]. 

2) Domain-Specific Descriptors: For skeletal data, joint an- 

gles or distances between joints can be considered as domain- 

specific descriptors. 

 

C. Deep Learning Feature Extraction 

In recent years, deep learning has emerged as a powerful 

paradigm for automatic feature learning. Deep neural net- 

works, particularly convolutional neural networks (CNNs) for 

sensor data and recurrent neural networks (RNNs) for temporal 

sequences, have demonstrated the ability to automatically 

extract hierarchical and abstract features from raw input. 

This end-to-end learning approach eliminates the need for 

manual feature engineering and can adapt to different data 

distributions. However, deep learning models often require 

large labeled datasets for training and may be computationally 

intensive. 
1) Convolutional Neural Networks (CNNs): : For image- 

based data such as video frames, CNNs can automatically 

learn hierarchical features, recognizing patterns and objects 

relevant to human activities. 
2) Recurrent Neural Networks (RNNs): : Applied to se- 

quential data, RNNs capture temporal dependencies. In the 

context of human activity recognition, they might capture the 

order and timing of movements. 

VI. LEARNING TECHNIQUES 

In the realm of recognizing human movements during 

physical rehabilitation exercises, our exploration of learning 

methods has evolved over time. This section takes a step- 

by-step look at these methods, each representing a different 

stage in how we understand and categorize actions accurately. 

Starting with traditional machine learning, where features 

were manually crafted, we move through the transformative 

phases of deep learning, transfer learning, and transformer- 

based learning. Eventually, we explore ensemble learning, 
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where combining various models can achieve better results. 

This journey not only traces the historical progression but 

also highlights the adaptive strategies developed to tackle 

challenges in the nuanced field of physical rehabilitation. 

A. Machine Learning 

Machine Learning (ML) represents a transformative ap- 

proach in the field of computer science, leveraging algorithms 

and statistical models to enable machines to improve at tasks 

through experience. At its core, ML employs data-driven tech- 

niques to automate predictive analysis and decision-making 

processes, bypassing the need for explicit programming for 

every individual task. This approach encompasses a broad 

spectrum of algorithms, including supervised learning, where 

models are trained on labeled datasets; unsupervised learning, 

which discovers hidden patterns in data without pre-assigned 

labels; and reinforcement learning, where an agent learns to 

make decisions by performing actions and receiving feedback 

in a dynamic environment. 

The versatility of ML methodologies has found applications 

across numerous domains such as healthcare, where it aids 

in diagnosing diseases and personalizing treatment plans; 

finance, for predicting market trends and managing risks; and 

autonomous vehicles, by enabling them to perceive their sur- 

roundings and make safe navigation decisions. This paradigm 

shift towards data-centric computing has not only accelerated 

technological advancements but also posed new challenges 

and ethical considerations, particularly concerning data pri- 

vacy, model interpretability, and the potential for automated 

decision-making systems to perpetuate biases. Nonetheless, 

the continuous evolution of ML techniques, coupled with 

growing computational power and data availability, promises 

to further expand its capabilities and societal impact. 

Utilizing features taken from Human Activity Recognition 

(HAR) datasets, a variety of classification algorithms, includ- 

ing logistic regression (LR) [96]–[99], support vector machine 

(SVM) [100]–[107], K-nearest neighbors (KNN) [108]–[112], 

random forest (RF) [113]–[116], Extra tree [45], XGBoost 

[117]–[120], and classifier stacking [121], [122], have been 

applied to activity classification. In Fang’s study [123], LR, 

SVM, and KNN, employing manual feature extraction, demon- 

strated notable performance, with KNN achieving acceptable 

accuracies of in recognizing seven daily living activities 

(ADL). 

In the trajectory of action classification for physical re- 

habilitation, the sequential exploration of learning paradigms 

unfolds a compelling narrative. Traditionally, machine learning 

techniques have laid the groundwork, employing handcrafted 

features to interpret sensor data intricacies. Taylor et. al inves- 

tigated various machine learning models for human activity 

recognition including KNN, Random Forrest and Support 

Vector Machine [112]. 

B. Deep Learning 

However, the paradigm shift to deep learning marks a revo- 

lutionary leap. Neural network architectures, such as Convolu- 

tional Neural Networks (CNNs) [9]–[11] designed for image- 

based or 1-dimensional data, and Recurrent Neural Networks 

(RNNs) utilized for sequential data [124], [125], inherently 

capture hierarchical features and temporal dependencies. This 

eliminates the necessity for explicit feature engineering. No- 

table recurrent models include Long-Short Term Memory 

(LSTM) [12], [13], [126], Bidirectional LSTM (BiLSTM) 

[127]–[129], and the combined architecture of CNN-LSTM 

[130], [131]. These advancements collectively contribute to the 

automated extraction of relevant features and dependencies in 

diverse data modalities. 

 

C. Transfer Learning 

Transitioning seamlessly, transfer learning emerges as a 

pragmatic strategy when confronted with limited labeled data. 

This approach leverages pre-trained models, originating from 

extensive datasets in general action recognition or computer 

vision, and fine-tunes them for specific rehabilitation tasks 

[132]. Capitalizing on broader domain knowledge, transfer 

learning enhances performance in scenarios characterized by 

constrained labeled data. [133]–[135] Various Transfer Learn- 

ing techniques were applied to the domain of human activity 

recognition, encompassing notable architectures such as VGG 

[136], ResNet, MobileNet, Xception, Inception, and DenseNet 

[74]. These diverse approaches illuminate the versatility and 

efficacy of transfer learning in enhancing the understanding of 

human activities across different models. 

 

D. Transformer 

Building on this foundation, transformer-based learning, 

inspired by transformer architectures, introduces attention 

mechanisms that selectively focus on pertinent segments of 

input data [137]. This innovative approach has exhibited con- 

siderable success in capturing dependencies within sequences, 

rendering it especially well-suited for unraveling the intricacies 

of rehabilitation movements. Noteworthy models encompass 

Graph Convolutional Networks (GCN) and Graph Attention 

Networks (GAT), along with Vision Transformer and Graph 

Transformer [138]. Additionally, ST Dynamic Graph Attention 

[139] and ST-GCN [140] exemplify the versatility and efficacy 

of this methodology in modeling complex dynamics within the 

realm of rehabilitation movements. 

 

E. Ensemble Learning 

Also Known as Late Fusion, Ensemble Models in ma- 

chine learning represent a robust approach that combines the 

predictions from multiple learning algorithms to make more 

accurate predictions than any individual model could. This 

methodology is founded on the principle that a group of 

weak learners can come together to form a strong learner, 

thereby enhancing the performance of models on complex 

datasets. Ensemble techniques such as Bagging (Bootstrap 

Aggregating), Boosting, and Stacking are among the most 

popular methods employed to aggregate the predictions of 

several base estimators built with a given learning algorithm, 

aiming to improve stability, reduce variance, and increase 

prediction accuracy. 

The strength of ensemble models lies in their versatility 

and efficacy across a wide range of applications, from winning 
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TABLE III 
LIMITATIONS OF DIFFERENT LEARNING TECHNIQUES 

 

Learning Technique Advantages Challenges Train 
Time 

Testing 
Time 

Accuracy Complexity Model 
Footprint 

Machine Learning Interpretable models, re- Limited in handling com- Moderate Low Moderate Low to Medium Low to 
 quire less data plex patterns, requires ad-     Medium 
  ditional feature engineer-      

  ing processing      

Deep Learning Excellent at learning com- Requires large amounts of High Moderate High High High 
 plex patterns, Can achieve data      

 high accuracy       

Transfer Learning Leverages pre-trained Performance depends on Low to Low to Moderate Low to Medium Low to 
 models,  Faster  training similarity of tasks Moderate Moderate   Medium 
 times, Can be effective       

 with limited data       

Attention Models Focuses on relevant parts computationally intensive High High High High High 

 of input sequences       

Ensemble Learning  Combines multiple 
models for improved 
accuracy, Reduces 
variance and over-fitting 

Can be complex to imple- 
ment and interpret, choos- 
ing the appropriate voting 
strategy is challenging 

These factors varies depending on the models chosen for ensemble 

 
 

 

Kaggle competitions to critical uses in banking for credit scor- 

ing and fraud detection, in healthcare for disease prediction 

and patient diagnosis, and in e-commerce for recommenda- 

tion systems. For instance, Random Forests, an ensemble of 

decision trees, is renowned for its superior classification per- 

formance, achieved by averaging the predictions of numerous 

decision trees trained on different parts of the same training 

set. Similarly, Gradient Boosting Machines (GBMs) iteratively 

correct the mistakes of weak learners to improve accuracy. 

Stacking models, on the other hand, learn to combine the 

predictions of several other models, thereby leveraging their 

distinct strengths. 

Despite their advantages, ensemble models also pose chal- 

lenges, such as increased computational complexity and the 

risk of overfitting, particularly with models like boosting that 

iteratively focus on hard to classify instances. Moreover, the 

interpretability of ensemble models can be lower compared to 

that of single models due to their complex nature. Nonetheless, 

with careful tuning and the appropriate selection of base 

models, ensemble methods continue to be a powerful tool in 

the machine learning toolkit, offering unmatched accuracy and 

robustness across a diverse array of tasks and domains. 

Ensemble learning, explored comprehensively by Zhang et 

al. [141], integrates data fusion, modeling, and mining in 

a unified framework. Effective ensemble methods carefully 

combine members to enhance performance, avoiding hap- 

hazard fusion pitfalls. In classification tasks, these methods 

are categorised into data-level, feature-level, decision-level, 

and model-level approaches. Chenguang et al. [142] utilize 

ensemble learning for hand function assessment, while Chi- 

hiro et al. [143] apply it for predicting functional outcomes 

after spinal cord injury. Additionally, Wenchuan et al. [144] 

leverage ensemble learning for personalized remote training 

in Parkinson’s disease patients. Yu et al. [145] proposed an 

ensemble-based framework called EGCN which demonstrated 

robust performance on both UI-PRMD and KIMORE datasets 

in the realm of skeleton-based rehabilitation. 

Table III presents a comparative analysis of various learning 

techniques, namely machine learning, deep learning, transfer 

learning, attention models, and ensemble learning, across 

several key factors. These factors encompass the advantages 

and challenges associated with each technique, along with 

considerations such as training time, testing time, model foot- 

print (which is particularly crucial for deployment on resource- 

constrained devices), and complexity, which includes aspects 

like model architecture and hyper-parameter tuning. 

The insights presented in this table are derived from seminal 

works in the field [132], [146]–[149]. In summary, each 

learning technique exhibits distinct advantages and limitations. 

Classical machine learning, for instance, offers interpretability 

and can operate with less data but may struggle with intricate 

patterns. In contrast, deep learning excels at discerning com- 

plex patterns but demands substantial data and computational 

resources. Transfer learning capitalizes on pre-existing models 

for new tasks, yet its effectiveness hinges on the similarity be- 

tween tasks. Attention models are adept at identifying pertinent 

segments within input sequences, albeit at a potentially higher 

computational cost. Ensemble learning, which combines mul- 

tiple models to enhance accuracy, presents challenges in terms 

of implementation and interpretation complexity. The selection 

of a suitable technique hinges on the specific requirements and 

constraints inherent to the given task. 

 

VII. CHALLENGES AND FUTURE DIRECTIONS 
 

The intersection of Human-Computer Interaction (HCI) and 

physical rehabilitation is a fertile ground for innovation, yet 

it is not without its challenges and issues. Addressing these 

will be vital for the continued advancement and integration 

of these technologies into mainstream healthcare. This section 

highlights the primary challenges in the domain and outlines 

potential avenues for future research: 
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Lack of large-scale annotated datasets presents a challenge 

for developing robust multi-person detection and tracking sys- 

tems, especially for communal rehabilitation settings. Current 

systems like MediaPipe are limited to single-person detec- 

tion, highlighting the need for scalable multi-person tracking 

solutions that maintain real-time performance. Frame rate 

optimization is another concern, as solutions capable of multi- 

person tracking often sacrifice frame rates, impacting real-time 

applicability. Enhancing processing speed without compromis- 

ing accuracy remains an ongoing challenge. Additionally, there 

is a cost vs. accessibility trade-off, where technologies like the 

Kinect camera offer sophisticated tracking capabilities but add 

to the cost barrier. Future research should focus on developing 

cost-effective solutions that do not sacrifice functionality. Data 

privacy and security are paramount, requiring robust security 

protocols to protect patient information. Sensor fusion and 

data integration from diverse sources pose technical hurdles, 

requiring seamless blending of data streams while ensuring 

reliability and interpretability. Algorithm performance is crit- 

ical, as it affects classification results, real-time usability, 

and compatibility with low-power devices. Algorithms must 

balance accuracy with speed to provide real-time feedback 

in rehabilitation exercises. User-centered design and usability 

are essential for adoption, requiring technologies to be user- 

friendly and tailored to the needs of patients and therapists. 

Finally, clinical validation and interdisciplinary collaboration 

are crucial, with long-term studies needed to validate efficacy 

and safety, aligning with regulatory frameworks for clinical 

adoption. Collaboration across disciplines is necessary to 

address these multifaceted challenges in physical rehabilitation 

technology. Table IV summarize the challenges in this domain 

 
TABLE IV 
CHALLENGES 

to revolutionize physical therapy by overcoming traditional 

limitations and meeting the demand for personalized, remote 

services. 

In data acquisition, sensor-based methods offer high preci- 

sion but can be intrusive, while camera-based approaches are 

non-intrusive but raise privacy and environmental challenges. 

Benchmarking datasets are crucial for development but need 

to better represent diverse patient populations. 

Feature extraction techniques, including 1D statistical meth- 

ods, 2D signal approaches, and deep learning methods like 

CNNs and RNNs, play a critical role. Deep learning shows 

promise but requires substantial resources and large datasets. 

Various learning techniques, such as machine learning, 

ensemble methods, deep learning, transfer learning, and trans- 

former models, offer unique advantages. However, challenges 

remain in ensuring model generalizability, real-world valida- 

tion, and addressing ethical considerations like data privacy. 

Future research should focus on interdisciplinary collab- 

oration to address these challenges and advance HCI in 

rehabilitation for improved patient care worldwide. 

 

IX.  CONCLUSION 

In conclusion, the integration of Human-Computer Inter- 

action (HCI) in physical rehabilitation offers a promising 

avenue to augment traditional therapeutic methods, making 

rehabilitation more accessible, engaging, and efficient. This 

survey has highlighted significant advancements in virtual and 

direct rehabilitation, the nuances of data acquisition methods, 

the importance of benchmarking datasets, and the evolution of 

feature extraction and learning techniques. While challenges 

such as multi-person detection, real-time processing, cost 

considerations, and ethical concerns persist, they also chart 

the course for future research. The potential of HCI to revo- 

  lutionize physical rehabilitation is immense, contingent upon 
Limitation Reference 

 
 

Lack of large-scale annotated datasets [23], [150]–[152] 
Multi-Person Detection and Tracking [40], [45] 
Frame Rate Optimization [153]–[156] 
Cost vs. Accessibility Trade-off [45], [157]–[161] 
Algorithmic trade-off [45], [157] 
Data Privacy and Security [162]–[166] 
Sensor Fusion and Data Integration [167]–[171] 
User-Centered Design and Usability [172]–[174] 
Clinical Validation and Regulatory Compliance [175]–[178] 

 

 

In addressing these issues, researchers have the opportunity 

to significantly impact the field of physical rehabilitation. The 

development of sophisticated, accessible, and user-centric HCI 

solutions has the potential to enhance patient outcomes and 

reshape the landscape of rehabilitative care. It is through 

the lens of these challenges that future research can find 

its direction, ensuring that advances in the domain are both 

technologically sound and aligned with the holistic needs of 

patients. 

 

VIII. DISCUSSION 

This survey provides a comprehensive overview of current 

HCI techniques in physical rehabilitation, emphasizing virtual 

and direct methodologies. These technologies offer potential 

continuous innovation and interdisciplinary collaboration. As 

we move forward, the focus must remain on creating inclusive, 

patient-centric solutions that not only embrace technological 

advancements but also uphold the highest standards of care and 

ethics. The journey of HCI in rehabilitation is just beginning, 

and its trajectory promises to reshape the future of physical 

therapy and patient care. 
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