
Informatics Bulletin, Faculty of Computers and Artificial Intelligence, Helwan University

Published Online Vol 6 Issue 2, July 2024

(https://fcihib.journals.ekb.eg)

Michel Samir Zaki Gad1, Mohamed Marie2, Ahmed El Sayed Yakoub2

1Software Engineering, Faculty of Computers and Artificial Intelligence, Helwan University, Cairo, Egypt.
2Information Systems department. Faculty of Computers and Artificial Intelligence, Helwan University, Cairo, Egypt.

michelsamir1996@gmail.com, mohamedmarie@yahoo.com, eng_ahmedyakoup@yahoo.com

Abstract—Graphical User Interface (GUI) visual nature makes

it the most commonly used type of User Interface (UI), as it

enables direct manipulation and interaction with software.

Mockup-based design is a popular method for creating GUIs.

This approach involves several steps, ultimately resulting in the

development of a more detailed mockup and its subsequent

implementation into code. Due to changing requirements, the

design process often requires repeating these steps, which can be

tedious and necessary modifications to the GUI code.

Furthermore, converting a design into GUI code is a time-

consuming task that can prevent developers from focusing on

implementing the software's functionality and logic, making it

costly. To address these challenges and allocate more time in

building the application's functionality, automating the code

generation process using sketches or GUI design images can be a

viable solution. This comprehensive literature review presents an

overview of various existing techniques and approaches that

facilitate the automatic generation of source code from hand-

drawn, high or low fidelity mockups and wireframes, utilizing

diverse methods such as deep learning or computer vision.

Index Terms— Code Generation, Graphical user interfaces,

Deep Learning, Computer Vision, Mockups

I. INTRODUCTION

n interactive software, user interfaces (UIs) are the means

by which users interact with and operate the system's

capabilities. Graphical User Interfaces (GUIs) are the most

commonly used type of UI due to their visual nature, allowing

direct manipulation of the software. However, creating GUIs

for applications is often a manual and time-consuming

process. A survey of over 5,000 developers revealed that 51%

reported working on app UI design tasks on a daily basis,

which is more frequent compared to other development tasks

[1]. Another study found that, on average, 48% of software

code size relates to the user interface, and 50% of

implementation time is dedicated to the user interface portion

[2].

Mockup-based design is a prevalent workflow for building

user interfaces [3]. In this approach, a graphic designer creates

a basic illustration of the intended UI design, typically starting

with a digital or sketched wireframe [4]. The wireframe

outlines the fundamental structure of the application but

lacks specific details like colors. As the design progresses, the

wireframe is refined and more details are added, turning it into

a higher-fidelity mockup [5]. Once the design is finalized, the

implementation process begins. The prototype is evaluated for

usability and any design issues, and this iterative process

continues until the prototype is deemed satisfactory. However,

due to changing requirements, this design process can become

repetitive, requiring modifications to the GUI code.

Developers are responsible for implementing client-side

software based on GUI mockups. However, converting a

design into GUI code is time-consuming and prevents

developers from focusing on implementing the actual

functionality and logic of the software, making it costly.

Generating GUI code from mockups also requires extensive

experience due to the complexity involved in extracting

visible elements, defining their relationships, selecting

appropriate UI components, and generating source code.

Another challenge arises when generating front-end code from

GUI images because the computer languages used to

implement such GUIs are specific to each target runtime

system. This can result in tedious and repetitive work when

the software needs to run on multiple platforms using native

technologies [19].

To address these challenges and allocate more time to

developing the core functionality of an application,

automating the generation of front-end code becomes

necessary. Developers need a way to visually understand UI

elements and their spatial arrangement within an image and

translate this understanding into appropriate GUI components

and compositions. Automating this process of visual

understanding and translation would greatly facilitate the

initial stages of GUI implementation. However, this task is

challenging due to the wide range of UI designs and the

complexity of generating GUI code.

The task of comprehending digital mockups presented as

images by a machine falls under the domain of Computer

Vision. It involves the machine making deductions,

understanding the mockups, and extracting meaningful

information from them. Computer Vision has made significant

advancements, with deep learning methods, particularly

Convolutional Neural Networks (CNNs), showing promise in

A Survey of techniques for Automatic Code

Generation from User Interface Designs with

Various Fidelities
Yakoub2

I

Informatics Bulletin, Helwan University, Vol 6 Issue 2, July 2024 70

various vision-related problems [6, 7].

Detecting objects in UI screenshots poses a unique visual

recognition challenge that requires a specialized solution. This

systematic literature review compares current studies to

evaluate the effectiveness of neural networks, computer

vision, and other approaches for identifying objects in UI

mockups or sketches, regardless of their fidelity or whether

they are hand-drawn or digitally created. The review also

assesses their ability to automate the generation of front-end

source code.

This paper is organized as follows. Section 2 provides

background information, followed by the literature review in

Section 3. Section 4 discusses the methodologies employed,

and Section 5 presents the results and limitations. Finally,

Section 6 presents the conclusions and recommendations.

II. BACKGROUND

There is some confusion surrounding the definitions of

wireframes and mockups and how they differ from each other.

It is important to provide a precise clarification and clearly

distinguish these concepts. Typically, the design process

follows a sequential progression consisting of three stages:

wireframes, mockups, and prototypes. However, it's worth

noting that variations may exist depending on the designer,

team, and project, and not all stages may be included. For the

purpose of this discussion, we will focus on wireframes and

mockups.

A. Wireframes

A wireframe, also known as a screen blueprint, is a

document that outlines the basic structure and layout of a page

or screen in applications. It visually represents the interface

elements that will be present on key pages. Wireframes are

considered low-fidelity design documents characterized by

their simplicity and lack of visual styles and branding

elements. They do not include specific details such as colors,

images, or finalized content. Instead, their purpose is to

provide a basic visual understanding of a page in the early

stages of a project, facilitating stakeholder and team approval

before moving to the creative phase.

Wireframes can be classified into two types: digital and hand-

drawn wireframes. Hand-drawn wireframes, also referred to as

sketches, are particularly useful during the initial design stages

and for quick iterations. They allow designers to visualize

rough ideas and create initial models for the overall layout in a

simplified format. On the other hand, digital wireframes are

more detailed while still maintaining simplicity. These

wireframes are typically created using digital wireframing

tools available online. Although they may not include specific

components like images or complete text, they provide more

detailed representations compared to hand-drawn wireframes.

Despite the availability of digital wireframing tools, many

designers still prefer to start the wireframing process by

sketching on paper using a pen (hand-drawn wireframe). This

preference can be attributed to the fact that designers often

have an artistic background and may feel more comfortable

and unrestricted when using traditional tools. While there is no

universally established standard, wireframe sketches typically

utilize a set of symbols that have widely recognized meanings.

Fig. 1 visually illustrates some of these elements.

Fig. 1. Examples of elements commonly used to represent UI elements in

wireframes

B. Mockups

A mockup is a design document that demonstrates a high

level of fidelity, closely resembling the desired final product.

It can be compared to a graphical user interface (GUI)

screenshot of an application. Mockups showcase the visual

appearance of the design and are typically created after the

wireframing stage but before prototyping. Wireframes, on the

other hand, focus on presenting the structure of the design, and

UI elements are later incorporated into the mockups.

Essentially, mockups enhance wireframes by adding visual

design elements such as images, colors, and typography. Fig. 2

provides a visual comparison to illustrate the differences

between wireframes and mockups.

Fig. 2. The difference between Hand-drawn wireframe and Digital wireframe

and Mockup.

Furthermore, these concepts can also be categorized based

Informatics Bulletin, Helwan University, Vol 6 Issue 2, July 2024 71

on three different levels: (i) low-fidelity, which resembles

hand-drawn wireframes and emphasizes outlining the basic

page structure; (ii) mid-fidelity, which resembles digital

wireframes and represents the initial stages of interface

creation; and (iii) high-fidelity, which refers to mockups with

high-quality visuals and content.

Once the final design document is completed, designers

pass their work to front-end developers for implementation in

code. The process of implementing user interfaces involves

translating the graphical designs created by the designers into

functional software code. While developers typically prioritize

implementing core functionalities, they often find themselves

spending a significant amount of time coding user interfaces.

III. LITERATURE REVIEW

Recently, there has been an increasing emphasis on utilizing

deep learning and computer vision techniques to automatically

generate UI code, which is a relatively new area of research.

The purpose of this literature review is to examine and

evaluate the current methods and approaches employed by

deep learning and computer vision in classifying UI

components within wireframes or mockups presented as

images. The related works in this section are categorized into

those that deal with wireframes and sketches, and those that

focus on mockups and screenshots. Despite the difference in

focus, both categories share a common goal of automatically

translating a design into application code.

A. Wireframe-Based Techniques

In [9], the authors employed a simple object detection

technique that takes a low-fidelity hand-drawn image of a web

page as input. The input image undergoes several stages of

processing, including morphological transformations and

contour detection, to enable object cropping and facilitate the

detection of individual elements in the sketched image. By

leveraging deep learning, the algorithm can determine whether

the detected element is a button, text, image, or another

component. The identified elements are then used to construct

an HTML page.

In the initial stage of this study, object detection is

performed. Gaussian Blur is applied, followed by rounds of

erosion and dilation, and contour detection to identify separate

rectangles corresponding to each element. At this point, the

system can only detect the presence of an element without

determining its classification or identity. The identified

rectangles are subsequently cropped and used as input for the

object recognition system. A Convolutional Neural Network

(CNN) is employed in this system to classify the cropped

objects. The identified objects are then coded into an HTML

page using a bootstrap framework.

In [10], the authors introduce a novel application called

Sketch2Code, which focuses on translating wireframes drawn

on paper into application code. As shown in Fig. 3, the dataset

includes both wireframes and their corresponding normalized

images, which represent the structure of the websites in a

standardized format. Sketch2Code utilizes an Artificial Neural

Network (ANN) to learn the relationship between a wireframe

image and its normalized image. This enables the detection

and classification of different UI elements and containers

within the wireframe. The approach employs a deep semantic

segmentation network technique, which falls under the

category of image segmentation.

The pre-processing for Sketch2Code involves noise

removal from the input image and contour detection to outline

the wireframe. After segmentation, the elements are detected,

and a Domain Specific Language (DSL) code is generated.

This DSL code represents the structure of the wireframe in a

JSON tree-like structure, which can be directly translated into

HTML.

The Microsoft AI Lab has developed Sketch2Code [11], an

application that utilizes artificial intelligence (AI) to transform

hand-drawn web page sketches, represented as images, into

valid HTML code. While there is no detailed literature

available on their work, the authors have made their code and

dataset openly accessible to the public. At the core of this

system is an image recognition model trained on datasets of

hand-drawn images. The model can identify essential HTML

elements like buttons, labels, and text boxes. Additionally, it

can recognize handwritten text and incorporate it into the

generated HTML code for the website.

Fig. 3. The original website (a) is normalized in (b). Wireframe sketch version

in (c)

In the work by Suleri et al. [12], they developed a software

prototyping workbench that employs object detectors to detect

elements within a sketch. The object detection model used is a

RetinaNet based Single-Shot MultiBox Detection (SSD)

network with a Resnet backbone. To train the model, the

authors created a synthetic dataset using real hand-drawn

wireframes. They gathered 5906 sketches of 19 Google's

Material Design based UI elements by engaging 350

participants and asking them to draw and annotate the

wireframes. To generate the synthetic dataset, the authors

randomly filled an image by sampling the UI elements and

placing them in random positions. This process resulted in an

annotated dataset of 125,000 images.

The authors categorized their system interactions into three

fidelity representations, each offering different levels of

interaction. At the low fidelity level, wireframes are

Informatics Bulletin, Helwan University, Vol 6 Issue 2, July 2024 72

represented in their original form, allowing users to create or

modify existing wireframes and their interactions. The

medium fidelity level is represented by the output of the object

detector and a generated medium fidelity design. In this phase,

users have control over the conversion process and can modify

the properties of the detected elements. They also have the

option to manually detect elements in case of missed

detections. At the high fidelity level, the final user interface

(UI) is generated, and users can define different themes and

generate the final code.

Jain et al. [13] introduced the Sketch2Code software,

focusing on the real-time transformation of hand-drawn

sketches into a coded UI application. They utilized a deep

neural network trained on a customized database of sketches

to identify UI elements. The dataset used in this study is

relatively small, consisting of only 149 sketches, which

include a total of 2,001 samples of GUI elements.

Furthermore, the GUI element sketches were created by

individuals.

To address the first sub-problem of recognizing UI

components in the image, the authors employed the RetinaNet

model to generate boundary box coordinates and component

classes in a CSV format without performing additional pre-

processing on the input image. The RetinaNet model used had

50-Resnet layers pre-trained on the ImageNet dataset and

incorporated the Feature Pyramid Network (FPN) to create

multi-scale feature maps. To tackle the second sub-problem of

overlapping bounding boxes, the authors developed an

overlapping classes filtering algorithm. This algorithm

assigned individual priorities to the prediction classes and

utilized a priority-score hierarchy to choose between

overlapping bounding boxes when the overlap exceeded 50%.

Finally, to address the third sub-problem of converting

predicted classes and bounding boxes into functional UI code,

the authors developed a UI parser. This parser translated the

UI representation object produced by the model into a coded

application. The UI representation object is platform-

independent, allowing the generated UI code to be used across

multiple platforms.

In contrast, Kim et al. [14] employed a different approach to

detect the underlying layout of a wireframe. Their

methodology involved two main steps: layout detection and

UI element recognition. For UI element recognition, they

utilized the Faster R-CNN object detector. For layout

detection, computer vision techniques were employed to

connect disconnected edges. Since the layouts were

constrained to the x and y-axis, a slope filtering technique was

utilized to remove slopes that were not horizontally or

vertically aligned. Finally, a correspondence line algorithm

was applied to determine the layout, and this algorithm was

executed for each detected layout until no more layouts were

found.

Yun et al. [15] employed YOLO, an object detection

network, in their study. The network was trained using transfer

learning from an existing network to learn the features of UI

elements. When provided with a hand-drawn mockup, the

mockup is passed through the YOLO network, which detects

the UI elements and provides their corresponding confidence

levels. The output is then transformed into a hierarchical

structure, which is used to generate code specifically for the

desired platform.

In the paper referenced as [16], the authors describe the

creation and implementation of deep learning models for

translating GUI sketches, created using the Balsamiq Mockups

application, into HTML, CSS, and Bootstrap code. A

comprehensive dataset was developed, consisting of graphical

user interface (GUI) sketches of web pages and corresponding

captions. The dataset includes 1,100 images, with 1,000

images for training and 100 for testing. It encompasses the

most commonly used Bootstrap components.

The study involved constructing two deep learning models,

each utilizing a different approach to integrate into the web

application. The first approach combines a convolutional

neural network (CNN) with two recurrent networks (RNNs) in

a hybrid architecture, following the encoder-decoder

architecture commonly used in papers like pix2code [19].

However, this approach is applied to sketches rather than GUI

screenshots. The second approach, which is a significant

contribution of the paper, involves utilizing YOLO to detect

and localize HTML elements. Additionally, a layout algorithm

was developed to convert the YOLO output into code. The

layout algorithm maps each object recognized by YOLO into

HTML and CSS code based on the bounding box coordinates.

The paper [17] presents a four-step pipeline for generating a

website in real-time from a hand-drawn sketch image. The

pipeline includes image acquisition, object and container

detection, building the object hierarchy, and HTML code

generation. During image acquisition, the sketch image is

converted to black and white, and an adaptive threshold is

applied to define the lines. Morphological operations,

specifically closing and erosion, are then used to remove any

noise. The object and container detection step identifies the

various elements depicted in the sketch using two modules:

one for detecting individual atomic elements and another for

identifying containers. Containers are defined as boxes that

encompass multiple atomic elements, such as buttons or text

elements.

For element detection, the YOLO object detector is

employed to identify elements along with their boundaries, but

without a hierarchical structure. The object hierarchy is built

using a sequence of modules that extract hierarchical

information. This involves merging elements and containers to

establish the hierarchy. The final stage is HTML code

generation, where the completed hierarchy is inputted into the

HTML/CSS generators to generate the corresponding code. To

train the YOLO models, a diverse and large collection of

examples is required. The paper also introduces a mechanism

for generating a large dataset of digital hand-drawn-like

sketches, commonly known as synthetic sketches.

Informatics Bulletin, Helwan University, Vol 6 Issue 2, July 2024 73

In their study [18], the authors employed YOLOv5, a

precise and efficient deep learning framework, to automate the

conversion of hand-drawn GUI mockups into Android-based

GUI prototypes. The approach proposed in this paper consists

of three main phases: detection and classification, alignment

of GUI components, and construction of the GUI layout.

In the detection and classification phase, a pre-trained

YOLO model is utilized to accelerate the training process and

improve performance. The custom dataset is then used to fine-

tune the pre-trained model, enabling the detection and

classification of hand-drawn components in the input image.

During the alignment of GUI components phase, the detected

GUI components are aligned using heuristic methods to ensure

accurate positioning and sizing. The output is a JSON file that

provides a comprehensive description for each GUI

component in the processed image.

Lastly, in the construction of the GUI layout phase, the

JSON file is converted into an output GUI prototype that

aligns with the target platform, as shown in Fig. 4. The custom

dataset consists of images, each containing the same number

of GUI components, covering all the listed components. The

dataset comprises 390 training images, with 90% used for

training and 10% for validation, along with 100 images

designed for testing.

Fig. 4. Architecture of the proposed methodology [18]

B. Mockup-Based Techniques

The authors of a particular paper [19] introduce Pix2code,

an application that converts high-fidelity GUI screenshots into

computer code. They utilize a Deep Learning framework to

perform this conversion for web-based, Android, and iOS

platforms. To create the Pix2code dataset, they map bootstrap-

based websites into a Domain-specific language (DSL)

consisting of 18 vocabulary tokens that describe the website's

layout and components. The dataset includes 3,500 pairs of

GUI images and their corresponding DSL code markup.

The core idea behind Pix2code is training a model to learn

the mapping between a GUI screenshot and the code that

produces the corresponding GUI. The model comprises two

main components. First, a Convolutional Neural Network

(CNN) extracts high-level visual features from the GUI image,

which are then transformed into a fixed-length feature vector

using a fully connected layer. Second, a Recurrent Neural

Network (RNN) with Long Short-Term Memory (LSTM)

architecture performs language modeling on the DSL code

related to the input GUI image. Through training, the LSTM

network grasps the syntax and semantics of the source code,

generating a language-encoded vector that represents a

sequence of one-hot encoded tokens corresponding to the DSL

code.

To solve the problem, the authors propose a three-step

approach. Firstly, a CNN-based image encoder extracts high-

level visual features from the GUI screenshot and converts

them into a fixed-length feature vector. Secondly, an LSTM

network, an RNN architecture, is trained to perform language

modeling on the DSL code associated with the GUI image.

This results in the LSTM network understanding the syntax

and semantics of the code, generating a language-encoded

vector representing a sequence of one-hot encoded tokens.

Lastly, an LSTM-based code decoder is used. The vectors

from the previous steps are concatenated and fed into this

decoder, which generates accurate code that reflects the layout

and components of the input GUI image. The LSTM decoder

learns the relationship between objects in the GUI image and

the corresponding tokens in the DSL code.

Another methodology described in reference [20] shares

similarities with the previous method discussed in reference

[19]. In this approach, a CNN processes the UI image

representation, which is then encoded by an LSTM into an

intermediate representation vector. This vector is further

decoded by a final LSTM to generate the final intermediate

code. This methodology features a more straightforward

training strategy as it does not require contextual information

as input to the network, making it more accessible, as

illustrated in Fig. 5.

Fig. 5. Architecture of Neural Machine Translator for UI-Image-to-GUI-

Skeleton Generation

Nguyen et al. [21] introduced the pioneering concept of

automatic reverse engineering of mobile application user

interfaces (REMAUI). By analyzing screenshots of a mobile

application's user interface, REMAUI identifies various

components such as buttons, textboxes, and images, and

generates the corresponding code. This study marked the first

instance of employing computer vision and optical character

recognition techniques, along with mobile-specific heuristics,

to facilitate the conversion of screen images into code for

mobile platforms. These applications not only capture the

structural elements but also consider the style aspects,

including images, colors, and fonts, of the designs. However,

despite the successful functionality of the REMAUI method, it

also exhibits certain limitations.

Moran et al. [22] introduced ReDraw as an extension of

REMAUI. ReDraw is an algorithm that takes mockups of

Informatics Bulletin, Helwan University, Vol 6 Issue 2, July 2024 74

mobile application screens and generates structured XML

code for them. The paper presents a three-stage approach to

automate the conversion of GUI designs into code, comprising

the Detection, Classification, and Assembly steps. The initial

stage of their approach involves employing computer vision

techniques to identify the individual components of the GUI.

In the second stage, these identified components are classified

according to their functionality, such as toggle-button, text-

area, and more. Deep convolutional neural networks (CNN)

are used for this classification task. In the final stage, the XML

code is generated by combining the outcomes of the previous

stages with the K-nearest neighbor (KNN) algorithm, which

organizes the code based on the hierarchy of web

programming.

It is noteworthy that the authors of this paper have also

contributed to the development of a dataset. This dataset

encompasses 14,382 GUI images, containing 191,300

annotated GUI segments. It includes 15 classifications, such as

RadioButton, ProgressBar, Switch, Button, and Checkbox.

The CNN model mentioned earlier relies on this dataset for

training and evaluation purposes.

Chen et al. [23] proposed a framework that takes UI pages

as input and generates the corresponding GUI code for

Android or iOS as output. The authors initially employ

traditional image processing techniques, including edge

detection, to locate the UI elements within the pages.

Subsequently, they utilize CNN-based classification to

determine the semantics of the UI elements, such as their

types.

The proposed framework comprises three distinct phases:

component identification, component type mapping, and GUI

code generation. In the component identification phase,

components are extracted from the UI pages using image

processing techniques. Then, a deep learning algorithm based

on CNN classification is employed to identify the component

types, such as Button or TextView. The component type

mapping phase involves mapping the identified component

types to their respective counterparts in the target platform.

Finally, the GUI code generation phase generates the final

implementation code based on the component types and their

attributes obtained from the previous phases. Notably, the

component type mapping phase plays a crucial role in the

framework, utilizing a large map and heuristic rules to

generate the final code.

Hassan et al. [24] adopted a top-down approach in their

study to gather information from an image. The first step

involves extracting and masking the text elements from the

image using the Canny edge detection algorithm. This method

detects all the edges in the image, including both the text and

other UI elements. To eliminate the outlines and boundaries of

the other UI elements, they applied a median blur technique.

After the application of dilation, a contour detection algorithm

is utilized to calculate the bounding box for each text element.

Next, the original image is masked to preserve only the UI

elements, and a pre-processing step is employed to extract

these elements. This step includes resizing the image,

converting it to grayscale, applying Gaussian blur, binarizing

it, and thresholding the image. Once the image is transformed

and thresholded, the contours of the UI elements inside the

image are identified. The output of this process is a set of

detected elements segmented into individual images. These

images are then subjected to a classification step to predict the

type of UI elements.

By employing transfer learning, a classification model that

has been trained on large datasets is used. This pre-trained

model is then retrained using their own dataset. The model

produces an output for each element, which includes the

element's UI type, bounding box information, and extracted

features. These details are stored in a hierarchical JSON

format.

In the method proposed by [25], image processing

technology is employed to detect UI components in the

application screenshot. Subsequently, the detected components

are classified using a customized CNN. To train the CNN, a

ReDraw dataset was randomly sampled. To identify UI

components in the screenshot image, a series of image

processing steps are applied, including grayscale conversion,

filtering, thresholding, dilation, and closing. The Flood-Fill

algorithm is then utilized to differentiate between distinct

sections in the GUI. These detected GUI sections are then

analyzed to determine the hierarchical relationships between

them. Next, the UI components and GUI sections are

segmented and separated based on the size of the detected

areas. Finally, the UI components are classified into generic

classes that correspond to the ReDraw dataset. The dataset

was constructed by randomly sampling 2,500 images from

each class from ReDraw dataset, which were then divided into

training (70%), validation (20%), and test (10%) datasets.

Introduced in 2020, UIED [26] is a GUI element detection

toolkit designed to detect GUI elements using an image-based

approach. It provides users with a platform where they can

upload their GUIs and automatically detect and identify the

elements present within them. The toolkit offers a web

interface for user convenience. The approach proposed by [26]

divides the detection task into two main parts: non-text

element detection and text detection. Traditional computer

vision algorithms are employed to extract non-text regions,

while deep learning models are utilized for classification and

text detection.

To detect non-text elements, the approach makes use of the

Flood-Fill and Sklansky algorithms to identify potential layout

blocks. The image is then subjected to edge detection and

transformed into a binary map representation. The binary map

is further segmented into block segments based on the

previously detected blocks, and the connected component

labeling algorithm is applied to detect GUI elements within

each block. These detected elements are subsequently

classified using a ResNet-50 model that has been trained on a

dataset consisting of 90,000 GUI elements divided into 15

distinct classes. For text detection, the approach employs the

Informatics Bulletin, Helwan University, Vol 6 Issue 2, July 2024 75

advanced EAST OCR (Optical Character Recognition), which

is a deep learning-based scene text detector capable of

accurately identifying text within the screenshot image.

Screen Recognition [27] is a system that generates metadata

describing UI components based on a single GUI image. This

metadata is then utilized by iOS VoiceOver to enhance

accessibility. The system is specifically optimized for mobile

devices, ensuring efficient memory usage and fast

performance. To achieve this, deep learning techniques are

employed, leveraging a dataset of iPhone applications. The

authors of the study created a comprehensive dataset by

manually downloading the top 200 most popular applications

from each of the 23 categories (excluding games). Screenshots

of visited UIs, along with their associated metadata such as

tree structure and properties of UI elements, were collected.

However, due to incomplete data, manual annotation was

necessary. A group of 40 individuals annotated all UI

elements in the collected screenshots using bounding boxes

and identifiers, resulting in a dataset comprising 77,637

annotated UI screens.

The UI detection model within the system is designed to

extract elements from the GUI and classify them accordingly.

To accomplish this, an SSD (Single Shot MultiBox Detector)

model with a MobileNetV1 backbone is employed. After the

inference process, the output undergoes post-processing to

eliminate unnecessary detections. Additionally, the system

utilizes a built-in OCR (Optical Character Recognition)

service to identify any missing elements. However, since the

detector generates separate bounding boxes for each element,

it is necessary to group the UI elements. This grouping task is

achieved using hard-coded heuristics that have been

empirically acquired from a randomly selected sample of 300

cases.

IV. METHODOLOGIES

This section classifies the primary methodologies used to

convert wireframes or mockups into source code. At the time

of writing, these techniques have been categorized into five

distinct methodologies.

A. End to End Methodologies

This methodology involves a complete end-to-end

approach, where a deep learning model is used to process the

mockup or wireframe and generate source code that can be

transformed into a user interface. This approach takes

inspiration from the way deep neural networks (DNNs) are

interconnected to generate textual descriptions (DSL code)

from an image. Successful implementation of this technique

often relies on having access to sizable datasets with specific

characteristics needed to train the models. Therefore, it is

often necessary to develop or utilize datasets that meet these

criteria. These datasets typically consist of a large collection

of wireframes or mockups in image form, along with their

corresponding code.

Broadly speaking, this methodology can be divided into

three sub-problems. The first is a computer vision problem, as

it needs to understand an image and infer the identified objects

and their properties. The second is a language modeling

problem, as it needs to understand text and generate

syntactically and semantically correct code. Finally, the

system utilizes solutions from the previous two sub-problems

to link the identified objects with their corresponding textual

descriptions. This allows the system to be trained and generate

DSL code for the GUI image.

Beltramelli's work [19] is considered the first to utilize this

methodology, which has since inspired numerous authors to

propose various approaches for reverse engineering UI designs

into code. Chen [20] improves upon Beltramelli's [19] work

by not requiring contextual information as input to the

network. In one of its two approaches, [16] employs the same

technique as [19], but applied to wireframes instead of

mockups.

B. Object Detection Methodologies

Object detection involves identifying, labeling, and defining

the boundaries of objects in an image to improve their

recognition. This methodology enables a computer to locate

and identify objects within an image and gather data about

their positions. Unlike image classification, which only labels

images containing a specific object (such as a button), object

detection creates bounding boxes for each detected object in

the image. This means that an image with two buttons would

have separate boxes and labels for each button. Fig. 6

illustrates that an image may contain multiple boxes.

Fig. 6. Detected and recognized elements with bounding boxes.

Convolutional neural networks (CNNs) are well-suited for

Informatics Bulletin, Helwan University, Vol 6 Issue 2, July 2024 76

object detection and are considered highly effective algorithms

for this purpose. Deep learning methods provide advanced

approaches to accurately recognize objects. CNN-based object

detection approaches can be broadly categorized into two

types: two-stage detectors, exemplified by Region-based CNN

(R-CNN) and its various adaptations (such as Faster R-CNN),

and one-stage detectors, including SSD, RetinaNet, and

YOLO.

The study presented in [14] employed a two-stage detector

in their approach, as they are known for their higher accuracy

rates despite being significantly slower and unsuitable for real-

time applications. In contrast, studies [12, 13, 15, 16, 17, 18,

27] utilized one-stage detectors in their approaches, as they

offer faster processing speeds and can be used in real-time

applications, albeit at the cost of lower accuracy rates. It is

worth noting that approaches using object detectors to detect

elements in an image often require heuristic methods to

determine the hierarchy and layout of these elements.

C. Heuristic Based Methodologies

These methodologies achieve the extraction of constituent

elements in a wireframe or mockup through the iterative

execution of a sequence of procedures. These procedures

involve the utilization of "classic" computer vision algorithms,

including traditional techniques such as edge/contour

detection, image resizing, grayscale conversion, Gaussian blur

application, filtering, thresholding, and morphological

operations like erosion, dilation, opening, closing, and

boundary extraction. Fig. 7 provides an example of these

computer vision techniques.

Fig. 7. Example of the computer vision techniques applied on a given mockup

by Nguyen et al. [21].

Nguyen et al. [21] were the pioneers in utilizing computer

vision and optical character recognition techniques to convert

GUI screenshots into application code. Similar techniques

were also employed in other studies, such as [8, 28, 29]. While

effective for simple GUIs, these techniques may have

limitations when dealing with complex GUI layouts or images

with gradient backgrounds or photographs. It is important to

note that some of these techniques are used as an initial step in

other segmentation approaches to facilitate the process of UI

element classification.

D. Hybrid Based Methodologies

These methodologies typically begin by using traditional

computer vision techniques (Heuristic-Based Methodologies)

to extract the location of UI elements. Subsequently, CNN-

based classification is utilized to determine the type (class)

and other semantic attributes of the UI elements.

Broadly speaking, this methodology can be divided into two

primary principles: detection and classification. In the

detection stage, computer vision techniques such as image

processing, morphological operations, and contour detection

are employed to identify rectangles that correspond to each UI

element in the GUI image. At this stage, the system can only

detect the presence of an element without being able to

classify it. These rectangles (UI elements) are then segmented

and cropped for the classification stage. After the detection

step, the detected elements are subjected to a classification

phase, where each element is classified using a pre-trained

CNN on a dataset of real-world examples.

This approach can be referred to as "Data-Driven

Methodologies" since it heavily relies on data for UI element

classification. Having a large and diverse dataset is crucial for

successfully training CNN models to classify UI elements.

The quality and quantity of the training data significantly

impact the accuracy of the classification results, as CNNs rely

heavily on data for learning. Additionally, data augmentation

or the creation of synthetic datasets can also be beneficial for

training CNN models.

Several studies, as cited in [9, 22, 23, 24, 25, 26], have

adopted this approach. However, grouping and linking UI

elements to determine hierarchy and layout are not

automatically obtained and require the use of heuristic rules.

V. EVALUATING METHODOLOGIES: RESULTS AND

LIMITATIONS

This section consists of two parts: a discussion of the results

obtained from the methodologies and a discussion of their

limitations.

A. Limitations

Our discussion will focus on the weaknesses and limitations

of the approaches utilized in previous related works. Hassan et

al.'s study [24] has certain limitations, including a text

identification step that may produce false positives, and these

false positives cannot be eliminated with median blur.

Additionally, the approach is sensitive to gradient variations,

which can have a negative impact on contour detection. In

Nguyen et al.'s study [21], the use of computer vision

techniques also has limitations. For instance, the process of

extending the techniques to identify new elements is time-

consuming, and programmers need to manually engineer

features to classify all new elements.

Beltramelli's study [21] identifies the main drawback of

their approach as the continuous maintenance required for the

DSL. This adds complexity and effort to the practical

utilization of the approach. Furthermore, the DSL relies on a

fixed set of UI components and a limited set of style

properties, such as color. Consequently, it is not designed to

handle the wide variety of component types, styles, and

Informatics Bulletin, Helwan University, Vol 6 Issue 2, July 2024 77

arrangements present in many example screenshots. Both

Aşıroğlu et al. [9] and Robinson [10] limit their consideration

of GUI elements to a small number of types. Aşıroğlu et al.

only consider TextBox, Dropdown, Button, and Checkbox,

while Robinson focuses on images, paragraphs, titles, inputs,

and buttons. This narrow focus restricts the practical

applicability of their proposed models, as effective approaches

should be capable of detecting all types of GUI elements

found in the relevant interface.

Chen et al. [20] observe a strength in their study, which is

the reliable detection of text elements in GUI images, even

when the texts are written in different languages. However, the

model has weaknesses that can result in reduced accuracy

when dealing with very simple GUI skeletons (those with 10

or fewer components, 3 or fewer containers, and/or 3 or fewer

levels of depth). Additionally, the model may struggle to

distinguish small UI elements positioned on top of complex

images. In the study [23], it was noted that the detected GUI

elements were not identified, and applying the heuristic rules

required significant manual effort, without offering direct code

generation. The study [23] also highlights that only four

components (textbox, textarea, checkbox, and button) were

used to detect UI elements, which can limit the usefulness of

the approach. Moreover, all UI components were assumed to

be left-aligned.

One limitation of the approach presented in this study [14]

is the variable inference time, ranging from 0.2 seconds to 1.7

seconds, which increases with the number of elements present

on a page. Additionally, images captured under low-light

conditions, where pixels are darker, can further increase the

inference time. The study [10] identifies only five UI elements

(Button, RadioButton, CheckBox, Textbox, and Text) in the

wireframes, which restricts the scope of their work.

Furthermore, the literature does not prioritize the detection of

containers in hand-drawn mockups, despite the fact that even

with human-drawn wireframes, there may be small

misalignments or gaps in the final design, making the

extraction of containers challenging.

The study [15] utilized a small dataset comprising only 50

sketches, with a total of 600 GUI elements, which can impact

the accuracy of the results. Moreover, the study lacked

detailed information regarding the results and the evaluation

of accuracy. In the work presented in [25], the precision of the

proposed classifier is suboptimal, considering the number of

classes in the dataset. Additionally, the detection of UI

components relies on traditional computer vision techniques,

and the detected contours require post-processing for

consistent results. In [26], UIED achieves a low accuracy F1

score of 52% on 5,000 UI images from the Rico dataset.

Furthermore, the element detection algorithm is not suitable

for noisy images, as it relies on clean input images.

Additionally, GUIs with open designs (not perfectly closed

regions) may be incorrectly identified as one large region.

The study [16] does not include recognition of internal

elements in the side navigation bar, limiting the approach's

scope. Furthermore, only a subset of Bootstrap components,

including images, videos, buttons, navigation bars, and tables,

are covered due to the large number of sketches required to

support all components, further restricting the work. The study

[17] discovered that the final system is vulnerable to changes

in camera perspective, which can result in misaligned

boundaries and incorrectly rotated images. Additionally, in the

system evaluation, certain components, such as checkboxes

and annotation elements, still require further improvement to

achieve an acceptable log-average miss rate (LAMR).

Regarding Microsoft AI Lab Sketch2Code [11], the quality

of the input sketches was found to significantly impact the

generated output. It is also important to note that Sketch2Code

has predefined icons and options it can recognize, meaning

designers must adhere to a specific syntax when creating

sketches. Deviating from this syntax may lead to undesired

results.

The approach proposed in [18] is unable to handle text in

hand-drawn wireframes. In [12], the Eve tool does not support

the use of pen and paper for sketching. Instead, it provides a

digital canvas for sketch creation, which may influence the

design process. In screen recognition [27], the elements are

grouped using hard-coded heuristics that require continual

improvement to enhance accuracy. Additionally, approaches

like Screen Recognition and others that rely on heuristics are

not capable of generating "deep" trees or producing new and

complex structures. REDRAW [16] can only detect and

assemble a specific set of stylistic details from mockup

artifacts, such as background colors, font colors, and font

sizes. Therefore, there is a need to expand the range of stylistic

details that can be inferred from a target mockup artifact.

B. Methodologies Results

The approaches primarily focus on developing interfaces for

web and mobile platforms. Most of these approaches are

specifically tailored for designing web-based GUIs, followed

by GUIs for the Android platform. A smaller number of

approaches are dedicated to developing GUIs for iOS

applications [27]. Additionally, some research studies have

proposed a multi-platform approach for designing interfaces

that can be used across all three platforms [13, 19]. The

number of GUI elements detected in interface design varies

significantly across different approaches. Some approaches

detect a small set of 4 to 5 elements, as observed in [9, 10, 14],

while others handle more extensive sets like the 15 GUI

elements in [22, 26] or the 19 GUI elements of Material

Design, as described in [12]. The majority of existing

approaches primarily focus on identifying the type and

location of GUI elements and do not attempt to comprehend

handwritten text, as seen in [19, 10, 18]. However, approaches

that do extract handwritten content from text-based GUI

elements often employ Optical Character Recognition (OCR)

Informatics Bulletin, Helwan University, Vol 6 Issue 2, July 2024 78

techniques as demonstrated in [26, 13, 22].

Regarding datasets, most studies have developed their own

datasets as an integral part of their research, as evidenced by

[10, 12, 20, 23, 27]. In contrast, a smaller number of studies

have utilized pre-existing datasets as [1, 25, 26]. The majority

of research studies crawl online stores or websites to collect

web pages or mobile applications and then automate the

process of capturing screenshots. In some cases, GUI images

are synthetically generated by randomly populating an image

with sampled UI elements placed at random locations [12].

Alternatively, some studies use GUI screenshots to

automatically generate sketches.

Informatics Bulletin, Helwan University, Vol 6 Issue 2, July 2024 79

The evaluation methods employed by each approach differ

significantly in terms of metrics and criteria. Most approaches

utilize metrics that prioritize the performance of object

detection, focusing primarily on accuracy, followed by

precision, recall, and F1 value. This differs from the

conventional notion that mean Average Precision (mAP) is the

most appropriate performance metric for multi-class object

detection, a metric only used by a small number of studies [12,

TABLE I

OVERVIEW OF THE COVERED STUDIES IN THIS PAPER

Reference Platform
Input

type

Output

type
Dataset

Detected

elements

Technique

utilized
Evaluation results

[9] Web Sketch HTML
Images from

Sketch2Code [11]
4 elements Hybrid Based

The model achieves 96% method
accuracy and 73% validation

accuracy.

[10] Web Sketch

GUI
hierarchical

skeleton

JSON

Screenshots from

1,750 URLs
5 elements Hybrid Based

F1 score varies from 0.548

(paragraph) to 0.811 (image)

[12] Android Sketch
Markup-like
DSL XML

code

UISketch dataset and

Syn-dataset

19 Material
Design

elements

Object

Detection
84.9% mAP with 72.7% AR

[13]
Android,
iOS, and

Web

Sketch HTML
149 sketches, 2,001

of GUI elements
10 elements

Object

Detection

The inference time ranges from 0.2
sec to 1.7 sec increasing with the

number of elements on a page.

[14] Web Sketch HTML/CSS NA 5 elements
Object

Detection

The accuracy is 91% and recall rate

86% of GUI object detection

[15] NA Sketch

Markup-like

DSL XML

code

50 sketch images

including ~ 600

elements

NA
Object

Detection
NA

[16] Web Sketch HTML/CSS
1100 images, 1000
for training and 100

for testing.

5 elements
from

bootstrap

Object

Detection

Yolo achieved an 88.28% accuracy

in the test set

[17] Web Sketch HTML/CSS

8400 mockups image
Then, fine-tuning it

using 100 real hand-

drawn images

9 atomic

elements and
containers

Object

Detection

The detection performance of our

approach achieved a mAP score of
95.37%,

[18] Android Sketch XML script

390 images for

training (90%

training and 10%
validation) and 100

images for testing.

13 element
Object

Detection

recognition accuracy of 98.54%
when tested on various hand-drawn

GUI structures designed by five

developers

[19]

Android,

iOS, and

Web

GUI
screenshot

Markup-like
DSL Code

Pix2code dataset

(1,750 Android,
1,750 iOS, 1,750

Web)

NA End-to-End

Pix2code can automatically

generate code from a single input
image with over 77% accuracy for

three different platforms

[20] Android
GUI

screenshot

Markup-like

DSL

185,277 pairs of GUI
images and GUI

skeletons

NA End-to-End
Accuracy: 60.28% , The average

BLEU score is 79.09

[21]
Android,

iOS
GUI

screenshot
mobile

application
NA text or images Heuristic Based

488 screenshots of third-party

applications showed that the UIs
generated by REMAUI were similar

to the original ones.

[22] Mobile
GUI

screenshot

GUI

hierarchical
skeleton

REDRAW - 14,382
GUI screenshots and

191,300 labeled GUI

elements

15 element Hybrid Based

CNN precision is 91.1%,

outperformed both REMAUI and
pix2code in MAE

[23]
Android,

iOS

GUI

screenshot

Markup-like
DSL code

(Android or
iOS)

1,842,580 unique

Android screenshots
NA Hybrid Based

The CNN classification achieving

more than 85% accuracy

[24]
mobile and

web-based

GUI

screenshot

hierarchical

JSON format
NA

6 elements

and text
Hybrid Based validation accuracy of 90.2%

[25] Mobile
GUI

screenshot

Detected
component

marked on the

image

ReDraw Dataset

(2500 images)
14 element Hybrid Based

The classification accuracy is up to

96.97%, precision rate is 86.4%,
and recall rate is 86.4%

[26] Web
GUI

screenshot
Stored in a
JSON file

Rico - 90,000 GUI
elements

15 element Hybrid Based
F1 score of 52% on 5,000 UI
images from the Rico dataset

[27]
Mobile

(iOS)

GUI

screenshot

UI elements

with apple
voice over

GUIs from 4,239

iPhone applications
(77,637 UI screens)

12 element
Object

Detection

The model’s weighted mAP (IOU >

0.5) is 87.5%.

Informatics Bulletin, Helwan University, Vol 6 Issue 2, July 2024 80

17, 27]. Some approaches also assess the similarity between

the generated GUI and the original GUI, either in terms of

visual similarity at the pixel level or structural similarity by

comparing the hierarchical tree structure. In certain cases,

similarity is evaluated manually by the researchers or by GUI

designers/developers. Overall, the reported accuracy varies

across studies, ranging from the mid-70s to the upper 90s on a

percentage scale. However, there can be significant variations

in the accuracy of detecting different types of GUI elements.

For example, in a study [10], the accuracy for paragraphs was

found to be 0.562, while the accuracy for images was 0.896.

Accuracy is a metric that measures how correct the model's

predictions are. It is calculated by dividing the number of

correct predictions by the total number of predictions.

Precision, on the other hand, focuses on accuracy by

indicating the proportion of true positives to the total number

of predicted positives. False positives occur when an object is

incorrectly identified as present in an image when it is not.

Recall measures completeness by indicating the proportion of

true positives to the total number of actual positives. False

negatives occur when an object that is present in an image is

not identified. The F1 score provides a balance between

precision and recall by calculating their harmonic mean. A

high F1 score indicates both precision and completeness. It is

used when both precision and recall are important.

Average Precision (AP) is a commonly used metric for

evaluating object detection models. It calculates the average

precision at different levels of recall and is typically assessed

for each object class individually. To compare performance

across all object classes, the mean Average Precision (mAP) is

often used as the final metric, which calculates the average AP

across all classes.

Visual similarity between generated applications and

mockups can be evaluated using metrics like mean squared

error (MSE) and mean absolute error (MAE) by comparing the

pixel values in screenshots of the generated applications with

the original mockup screenshots. Minimizing MSE and MAE

on test examples indicates high visual similarity. BLEU

(Bilingual Evaluation Understudy) is another metric used to

evaluate the similarity between machine-generated translations

and human-created reference translations.

Table 1 provides a concise summary of the studies covered

in this paper, including information on the platform, input

type, output type, dataset, detected elements, technique used,

and evaluation results for each study.

VI. CONCLUSION

Generating frontend code from image designs, such as

wireframes or mockups, is a challenging task that requires a

visual understanding of the images to detect UI elements and

their hierarchy. This literature review provides an overview of

various techniques and approaches that employ different

methods, such as deep learning or computer vision, to

automatically generate source code and accelerate the UI

design process. Deep learning approaches proved to be well-

suited for this task and achieved higher accuracy compared to

relying solely on computer vision techniques. However, the

use of diverse evaluation measures in this research indicates a

lack of a standardized evaluation framework. Furthermore, the

absence of standardized and high-quality datasets hinders

effective comparison of approaches and future work in this

field.

REFERENCES

[1] IDC. 2015. Mobile Trends Report. https://www.appcelerator.com/

resource-center/research/2015-mobile-trends-report/ Accessed: 15

February 2018.

[2] B. A. Myers and M. B. Rosson, “Survey on user interface

programming,” in Proceedings of the SIGCHI conference on Human
factors in computing systems - CHI ’92, New York, New York, USA:

ACM Press, 1992, pp. 195–202. doi: 10.1145/142750.142789.

[3] M. W. Newman and J. A. Landay, “Sitemaps, storyboards, and

specifications,” in Proceedings of the 3rd conference on Designing

interactive systems: processes, practices, methods, and techniques, New
York, NY, USA: ACM, Aug. 2000, pp. 263–274. doi:

10.1145/347642.347758.

[4] P. Campos and N. Nunes, “Practitioner Tools and Workstyles for User-

Interface Design,” IEEE Softw, vol. 24, no. 1, pp. 73–80, Jan. 2007, doi:
10.1109/MS.2007.24.

[5] T. Silva da Silva, A. Martin, F. Maurer, and M. Silveira, “User-Centered
Design and Agile Methods: A Systematic Review,” in 2011 AGILE

Conference, IEEE, Aug. 2011, pp. 77–86. doi: 10.1109/AGILE.2011.24.

[6] C. Dong, C. C. Loy, K. He, and X. Tang, “Image Super-Resolution

Using Deep Convolutional Networks,” Dec. 2014, [Online]. Available:

http://arxiv.org/abs/1501.00092

[7] B. Varadarajan, G. Toderici, S. Vijayanarasimhan, and A. Natsev,

“Efficient Large Scale Video Classification,” May 2015, [Online].
Available: http://arxiv.org/abs/1505.06250

[8] J. Seifert, B. Pfleging, E. del Carmen Valderrama Bahamóndez, M.
Hermes, E. Rukzio, and A. Schmidt, “Mobidev,” in Proceedings of the

13th International Conference on Human Computer Interaction with

Mobile Devices and Services, New York, NY, USA: ACM, Aug. 2011,
pp. 109–112. doi: 10.1145/2037373.2037392.

[9] B. Asiroglu et al., “Automatic HTML Code Generation from Mock-Up
Images Using Machine Learning Techniques,” in 2019 Scientific

Meeting on Electrical-Electronics & Biomedical Engineering and

Computer Science (EBBT), IEEE, Apr. 2019, pp. 1–4. doi:
10.1109/EBBT.2019.8741736.

[10] A. Robinson, “Sketch2code: Generating a website from a paper
mockup,” May 2019, [Online]. Available:

http://arxiv.org/abs/1905.13750

[11] Microsoft, ‘Microsoft AI lab’, Aug. 23, 2018.

https://www.ailab.microsoft.com/ (accessed Nov. 20, 2018).

[12] S. Suleri, V. P. Sermuga Pandian, S. Shishkovets, and M. Jarke, “Eve,”

in Extended Abstracts of the 2019 CHI Conference on Human Factors in

Computing Systems, New York, NY, USA: ACM, May 2019, pp. 1–6.
doi: 10.1145/3290607.3312994.

[13] V. Jain, P. Agrawal, S. Banga, R. Kapoor, and S. Gulyani,
“Sketch2Code: Transformation of Sketches to UI in Real-time Using

Deep Neural Network,” Oct. 2019.

Informatics Bulletin, Helwan University, Vol 6 Issue 2, July 2024 81

[14] B. Kim, S. Park, T. Won, J. Heo, and B. Kim, “Deep-learning based web
UI automatic programming,” in Proceedings of the 2018 Conference on

Research in Adaptive and Convergent Systems, New York, NY, USA:

ACM, Oct. 2018, pp. 64–65. doi: 10.1145/3264746.3264807.

[15] Y. S. Yun, J. Jung, S. Eun, S. S. So, and J. Heo, “Detection of GUI

elements on sketch images using object detector based on deep neural
networks,” in Lecture Notes in Electrical Engineering, Springer Verlag,

2019, pp. 86–90. doi: 10.1007/978-981-13-0311-1_16.

[16] T. Bouças and A. Esteves, “Converting Web Pages Mockups to HTML

using Machine Learning,” in Proceedings of the 16th International

Conference on Web Information Systems and Technologies,
SCITEPRESS - Science and Technology Publications, 2020, pp. 217–

224. doi: 10.5220/0010116302170224.

[17] J. Ferreira, A. Restivo, and H. Ferreira, “Automatically Generating

Websites from Hand-drawn Mockups,” in Proceedings of the 16th

International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications, SCITEPRESS - Science

and Technology Publications, 2021, pp. 48–58. doi:

10.5220/0010193600480058.

[18] A. A. Abdelhamid, S. R. Alotaibi, and A. Mousa, “Deep learning‐based

prototyping of android GUI from hand‐drawn mockups,” IET Software,

vol. 14, no. 7, pp. 816–824, Dec. 2020, doi: 10.1049/iet-sen.2019.0378.

[19] T. Beltramelli, “pix2code,” in Proceedings of the ACM SIGCHI

Symposium on Engineering Interactive Computing Systems, New York,

NY, USA: ACM, Jun. 2018, pp. 1–6. doi: 10.1145/3220134.3220135.

[20] C. Chen, T. Su, G. Meng, Z. Xing, and Y. Liu, “From UI design image

to GUI skeleton,” in Proceedings of the 40th International Conference
on Software Engineering, New York, NY, USA: ACM, May 2018, pp.

665–676. doi: 10.1145/3180155.3180240.

[21] T. A. Nguyen and C. Csallner, “Reverse Engineering Mobile

Application User Interfaces with REMAUI (T),” in 2015 30th

IEEE/ACM International Conference on Automated Software

Engineering (ASE), IEEE, Nov. 2015, pp. 248–259. doi:

10.1109/ASE.2015.32.

[22] K. Moran, C. Bernal-Cardenas, M. Curcio, R. Bonett, and D.

Poshyvanyk, “Machine Learning-Based Prototyping of Graphical User

Interfaces for Mobile Apps,” IEEE Transactions on Software
Engineering, vol. 46, no. 2, pp. 196–221, Feb. 2020, doi:

10.1109/TSE.2018.2844788.

[23] S. Chen, L. Fan, T. Su, L. Ma, Y. Liu, and L. Xu, “Automated Cross-

Platform GUI Code Generation for Mobile Apps,” in 2019 IEEE 1st

International Workshop on Artificial Intelligence for Mobile
(AI4Mobile), IEEE, Feb. 2019, pp. 13–16. doi:

10.1109/AI4Mobile.2019.8672718.

[24] S. Hassan, M. Arya, U. Bhardwaj, and S. Kole, “Extraction and

Classification of User Interface Components from an Image,”

International Journal of Pure and Applied Mathematics, vol. 118, no. 24,

2018.

[25] X. Sun, T. Li, and J. Xu, “UI Components Recognition System Based
On Image Understanding,” in 2020 IEEE 20th International Conference

on Software Quality, Reliability and Security Companion (QRS-C),

IEEE, Dec. 2020, pp. 65–71. doi: 10.1109/QRS-C51114.2020.00022.

[26] M. Xie, S. Feng, Z. Xing, J. Chen, and C. Chen, “UIED: a hybrid tool

for GUI element detection,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, New York, NY, USA:

ACM, Nov. 2020, pp. 1655–1659. doi: 10.1145/3368089.3417940.

[27] X. Zhang, L. De Greef, and S. White, “Screen Recognition: Creating

Accessibility Metadata for Mobile Applications from Pixels,” in
Conference on Human Factors in Computing Systems - Proceedings,

Association for Computing Machinery, May 2021. doi:

10.1145/3411764.3445186.

[28] Seoyeon Kim, Jisu Park, Jinman Jung, Seongbae Eun, Young-Sun Yun,

Sunsup So, Bongjae Kim, Hong Min and Junyoung Heo, 2018.

Identifying UI Widgets of Mobile Applications from Sketch Images.
Journal of Engineering and Applied Sciences, 13: 1561-1566.

[29] A. Swearngin, M. Dontcheva, W. Li, J. Brandt, M. Dixon, and A. J. Ko,
“Rewire,” in Proceedings of the 2018 CHI Conference on Human

Factors in Computing Systems, New York, NY, USA: ACM, Apr. 2018,

pp. 1–12. doi: 10.1145/3173574.3174078.

