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Abstract—Graphical User Interface (GUI) visual nature makes 

it the most commonly used type of User Interface (UI), as it 

enables direct manipulation and interaction with software. 

Mockup-based design is a popular method for creating GUIs. 

This approach involves several steps, ultimately resulting in the 

development of a more detailed mockup and its subsequent 

implementation into code. Due to changing requirements, the 

design process often requires repeating these steps, which can be 

tedious and necessary modifications to the GUI code. 

Furthermore, converting a design into GUI code is a time-

consuming task that can prevent developers from focusing on 

implementing the software's functionality and logic, making it 

costly. To address these challenges and allocate more time in 

building the application's functionality, automating the code 

generation process using sketches or GUI design images can be a 

viable solution. This comprehensive literature review presents an 

overview of various existing techniques and approaches that 

facilitate the automatic generation of source code from hand-

drawn, high or low fidelity mockups and wireframes, utilizing 

diverse methods such as deep learning or computer vision. 

 
Index Terms— Code Generation, Graphical user interfaces, 

Deep Learning, Computer Vision, Mockups  

 

I. INTRODUCTION 

n interactive software, user interfaces (UIs) are the means 

by which users interact with and operate the system's 

capabilities. Graphical User Interfaces (GUIs) are the most 

commonly used type of UI due to their visual nature, allowing 

direct manipulation of the software. However, creating GUIs 

for applications is often a manual and time-consuming 

process. A survey of over 5,000 developers revealed that 51% 

reported working on app UI design tasks on a daily basis, 

which is more frequent compared to other development tasks 

[1]. Another study found that, on average, 48% of software 

code size relates to the user interface, and 50% of 

implementation time is dedicated to the user interface portion 

[2]. 

Mockup-based design is a prevalent workflow for building 

user interfaces [3]. In this approach, a graphic designer creates 

a basic illustration of the intended UI design, typically starting  

with a digital or sketched wireframe [4]. The wireframe  

 

 

outlines the fundamental structure of the application but 

lacks specific details like colors. As the design progresses, the 

wireframe is refined and more details are added, turning it into 

a higher-fidelity mockup [5]. Once the design is finalized, the 

implementation process begins. The prototype is evaluated for 

usability and any design issues, and this iterative process 

continues until the prototype is deemed satisfactory. However, 

due to changing requirements, this design process can become 

repetitive, requiring modifications to the GUI code. 

Developers are responsible for implementing client-side 

software based on GUI mockups. However, converting a 

design into GUI code is time-consuming and prevents 

developers from focusing on implementing the actual 

functionality and logic of the software, making it costly. 

Generating GUI code from mockups also requires extensive 

experience due to the complexity involved in extracting 

visible elements, defining their relationships, selecting 

appropriate UI components, and generating source code. 

Another challenge arises when generating front-end code from 

GUI images because the computer languages used to 

implement such GUIs are specific to each target runtime 

system. This can result in tedious and repetitive work when 

the software needs to run on multiple platforms using native 

technologies [19]. 

To address these challenges and allocate more time to 

developing the core functionality of an application, 

automating the generation of front-end code becomes 

necessary. Developers need a way to visually understand UI 

elements and their spatial arrangement within an image and 

translate this understanding into appropriate GUI components 

and compositions. Automating this process of visual 

understanding and translation would greatly facilitate the 

initial stages of GUI implementation. However, this task is 

challenging due to the wide range of UI designs and the 

complexity of generating GUI code. 

The task of comprehending digital mockups presented as 

images by a machine falls under the domain of Computer 

Vision. It involves the machine making deductions, 

understanding the mockups, and extracting meaningful 

information from them. Computer Vision has made significant 

advancements, with deep learning methods, particularly 

Convolutional Neural Networks (CNNs), showing promise in 
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various vision-related problems [6, 7]. 

 

Detecting objects in UI screenshots poses a unique visual 

recognition challenge that requires a specialized solution. This 

systematic literature review compares current studies to 

evaluate the effectiveness of neural networks, computer 

vision, and other approaches for identifying objects in UI 

mockups or sketches, regardless of their fidelity or whether 

they are hand-drawn or digitally created. The review also 

assesses their ability to automate the generation of front-end 

source code. 

This paper is organized as follows. Section 2 provides 

background information, followed by the literature review in 

Section 3. Section 4 discusses the methodologies employed, 

and Section 5 presents the results and limitations. Finally, 

Section 6 presents the conclusions and recommendations. 

 

II. BACKGROUND 

There is some confusion surrounding the definitions of 

wireframes and mockups and how they differ from each other. 

It is important to provide a precise clarification and clearly 

distinguish these concepts. Typically, the design process 

follows a sequential progression consisting of three stages: 

wireframes, mockups, and prototypes. However, it's worth 

noting that variations may exist depending on the designer, 

team, and project, and not all stages may be included. For the 

purpose of this discussion, we will focus on wireframes and 

mockups. 

A. Wireframes 

A wireframe, also known as a screen blueprint, is a 

document that outlines the basic structure and layout of a page 

or screen in applications. It visually represents the interface 

elements that will be present on key pages. Wireframes are 

considered low-fidelity design documents characterized by 

their simplicity and lack of visual styles and branding 

elements. They do not include specific details such as colors, 

images, or finalized content. Instead, their purpose is to 

provide a basic visual understanding of a page in the early 

stages of a project, facilitating stakeholder and team approval 

before moving to the creative phase. 

 

Wireframes can be classified into two types: digital and hand-

drawn wireframes. Hand-drawn wireframes, also referred to as 

sketches, are particularly useful during the initial design stages 

and for quick iterations. They allow designers to visualize 

rough ideas and create initial models for the overall layout in a 

simplified format. On the other hand, digital wireframes are 

more detailed while still maintaining simplicity. These 

wireframes are typically created using digital wireframing 

tools available online. Although they may not include specific 

components like images or complete text, they provide more 

detailed representations compared to hand-drawn wireframes. 

 

Despite the availability of digital wireframing tools, many 

designers still prefer to start the wireframing process by 

sketching on paper using a pen (hand-drawn wireframe). This 

preference can be attributed to the fact that designers often 

have an artistic background and may feel more comfortable 

and unrestricted when using traditional tools. While there is no 

universally established standard, wireframe sketches typically 

utilize a set of symbols that have widely recognized meanings. 

Fig. 1 visually illustrates some of these elements. 

 
Fig. 1. Examples of elements commonly used to represent UI elements in 

wireframes 

B. Mockups 

A mockup is a design document that demonstrates a high 

level of fidelity, closely resembling the desired final product. 

It can be compared to a graphical user interface (GUI) 

screenshot of an application. Mockups showcase the visual 

appearance of the design and are typically created after the 

wireframing stage but before prototyping. Wireframes, on the 

other hand, focus on presenting the structure of the design, and 

UI elements are later incorporated into the mockups. 

Essentially, mockups enhance wireframes by adding visual 

design elements such as images, colors, and typography. Fig. 2 

provides a visual comparison to illustrate the differences 

between wireframes and mockups. 

 
Fig. 2. The difference between Hand-drawn wireframe and Digital wireframe 

and Mockup. 

 

Furthermore, these concepts can also be categorized based 
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on three different levels: (i) low-fidelity, which resembles 

hand-drawn wireframes and emphasizes outlining the basic 

page structure; (ii) mid-fidelity, which resembles digital 

wireframes and represents the initial stages of interface 

creation; and (iii) high-fidelity, which refers to mockups with 

high-quality visuals and content. 

 

Once the final design document is completed, designers 

pass their work to front-end developers for implementation in 

code. The process of implementing user interfaces involves 

translating the graphical designs created by the designers into 

functional software code. While developers typically prioritize 

implementing core functionalities, they often find themselves 

spending a significant amount of time coding user interfaces. 

 

III. LITERATURE REVIEW 

Recently, there has been an increasing emphasis on utilizing 

deep learning and computer vision techniques to automatically 

generate UI code, which is a relatively new area of research. 

The purpose of this literature review is to examine and 

evaluate the current methods and approaches employed by 

deep learning and computer vision in classifying UI 

components within wireframes or mockups presented as 

images. The related works in this section are categorized into 

those that deal with wireframes and sketches, and those that 

focus on mockups and screenshots. Despite the difference in 

focus, both categories share a common goal of automatically 

translating a design into application code. 

A. Wireframe-Based Techniques 

In [9], the authors employed a simple object detection 

technique that takes a low-fidelity hand-drawn image of a web 

page as input. The input image undergoes several stages of 

processing, including morphological transformations and 

contour detection, to enable object cropping and facilitate the 

detection of individual elements in the sketched image. By 

leveraging deep learning, the algorithm can determine whether 

the detected element is a button, text, image, or another 

component. The identified elements are then used to construct 

an HTML page. 

In the initial stage of this study, object detection is 

performed. Gaussian Blur is applied, followed by rounds of 

erosion and dilation, and contour detection to identify separate 

rectangles corresponding to each element. At this point, the 

system can only detect the presence of an element without 

determining its classification or identity. The identified 

rectangles are subsequently cropped and used as input for the 

object recognition system. A Convolutional Neural Network 

(CNN) is employed in this system to classify the cropped 

objects. The identified objects are then coded into an HTML 

page using a bootstrap framework. 

 

In [10], the authors introduce a novel application called 

Sketch2Code, which focuses on translating wireframes drawn 

on paper into application code. As shown in Fig. 3, the dataset 

includes both wireframes and their corresponding normalized 

images, which represent the structure of the websites in a 

standardized format. Sketch2Code utilizes an Artificial Neural 

Network (ANN) to learn the relationship between a wireframe 

image and its normalized image. This enables the detection 

and classification of different UI elements and containers 

within the wireframe. The approach employs a deep semantic 

segmentation network technique, which falls under the 

category of image segmentation. 

The pre-processing for Sketch2Code involves noise 

removal from the input image and contour detection to outline 

the wireframe. After segmentation, the elements are detected, 

and a Domain Specific Language (DSL) code is generated. 

This DSL code represents the structure of the wireframe in a 

JSON tree-like structure, which can be directly translated into 

HTML. 

 

The Microsoft AI Lab has developed Sketch2Code [11], an 

application that utilizes artificial intelligence (AI) to transform 

hand-drawn web page sketches, represented as images, into 

valid HTML code. While there is no detailed literature 

available on their work, the authors have made their code and 

dataset openly accessible to the public. At the core of this 

system is an image recognition model trained on datasets of 

hand-drawn images. The model can identify essential HTML 

elements like buttons, labels, and text boxes. Additionally, it 

can recognize handwritten text and incorporate it into the 

generated HTML code for the website. 

  

 
Fig. 3. The original website (a) is normalized in (b). Wireframe sketch version 

in (c) 

 

In the work by Suleri et al. [12], they developed a software 

prototyping workbench that employs object detectors to detect 

elements within a sketch. The object detection model used is a 

RetinaNet based Single-Shot MultiBox Detection (SSD) 

network with a Resnet backbone. To train the model, the 

authors created a synthetic dataset using real hand-drawn 

wireframes. They gathered 5906 sketches of 19 Google's 

Material Design based UI elements by engaging 350 

participants and asking them to draw and annotate the 

wireframes. To generate the synthetic dataset, the authors 

randomly filled an image by sampling the UI elements and 

placing them in random positions. This process resulted in an 

annotated dataset of 125,000 images. 

The authors categorized their system interactions into three 

fidelity representations, each offering different levels of 

interaction. At the low fidelity level, wireframes are 
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represented in their original form, allowing users to create or 

modify existing wireframes and their interactions. The 

medium fidelity level is represented by the output of the object 

detector and a generated medium fidelity design. In this phase, 

users have control over the conversion process and can modify 

the properties of the detected elements. They also have the 

option to manually detect elements in case of missed 

detections. At the high fidelity level, the final user interface 

(UI) is generated, and users can define different themes and 

generate the final code. 

 

Jain et al. [13] introduced the Sketch2Code software, 

focusing on the real-time transformation of hand-drawn 

sketches into a coded UI application. They utilized a deep 

neural network trained on a customized database of sketches 

to identify UI elements. The dataset used in this study is 

relatively small, consisting of only 149 sketches, which 

include a total of 2,001 samples of GUI elements. 

Furthermore, the GUI element sketches were created by 

individuals. 

To address the first sub-problem of recognizing UI 

components in the image, the authors employed the RetinaNet 

model to generate boundary box coordinates and component 

classes in a CSV format without performing additional pre-

processing on the input image. The RetinaNet model used had 

50-Resnet layers pre-trained on the ImageNet dataset and 

incorporated the Feature Pyramid Network (FPN) to create 

multi-scale feature maps. To tackle the second sub-problem of 

overlapping bounding boxes, the authors developed an 

overlapping classes filtering algorithm. This algorithm 

assigned individual priorities to the prediction classes and 

utilized a priority-score hierarchy to choose between 

overlapping bounding boxes when the overlap exceeded 50%. 

Finally, to address the third sub-problem of converting 

predicted classes and bounding boxes into functional UI code, 

the authors developed a UI parser. This parser translated the 

UI representation object produced by the model into a coded 

application. The UI representation object is platform-

independent, allowing the generated UI code to be used across 

multiple platforms. 

 

In contrast, Kim et al. [14] employed a different approach to 

detect the underlying layout of a wireframe. Their 

methodology involved two main steps: layout detection and 

UI element recognition. For UI element recognition, they 

utilized the Faster R-CNN object detector. For layout 

detection, computer vision techniques were employed to 

connect disconnected edges. Since the layouts were 

constrained to the x and y-axis, a slope filtering technique was 

utilized to remove slopes that were not horizontally or 

vertically aligned. Finally, a correspondence line algorithm 

was applied to determine the layout, and this algorithm was 

executed for each detected layout until no more layouts were 

found.  

 

Yun et al. [15] employed YOLO, an object detection 

network, in their study. The network was trained using transfer 

learning from an existing network to learn the features of UI 

elements. When provided with a hand-drawn mockup, the 

mockup is passed through the YOLO network, which detects 

the UI elements and provides their corresponding confidence 

levels. The output is then transformed into a hierarchical 

structure, which is used to generate code specifically for the 

desired platform. 

In the paper referenced as [16], the authors describe the 

creation and implementation of deep learning models for 

translating GUI sketches, created using the Balsamiq Mockups 

application, into HTML, CSS, and Bootstrap code. A 

comprehensive dataset was developed, consisting of graphical 

user interface (GUI) sketches of web pages and corresponding 

captions. The dataset includes 1,100 images, with 1,000 

images for training and 100 for testing. It encompasses the 

most commonly used Bootstrap components. 

The study involved constructing two deep learning models, 

each utilizing a different approach to integrate into the web 

application. The first approach combines a convolutional 

neural network (CNN) with two recurrent networks (RNNs) in 

a hybrid architecture, following the encoder-decoder 

architecture commonly used in papers like pix2code [19]. 

However, this approach is applied to sketches rather than GUI 

screenshots. The second approach, which is a significant 

contribution of the paper, involves utilizing YOLO to detect 

and localize HTML elements. Additionally, a layout algorithm 

was developed to convert the YOLO output into code. The 

layout algorithm maps each object recognized by YOLO into 

HTML and CSS code based on the bounding box coordinates. 

 

The paper [17] presents a four-step pipeline for generating a 

website in real-time from a hand-drawn sketch image. The 

pipeline includes image acquisition, object and container 

detection, building the object hierarchy, and HTML code 

generation. During image acquisition, the sketch image is 

converted to black and white, and an adaptive threshold is 

applied to define the lines. Morphological operations, 

specifically closing and erosion, are then used to remove any 

noise. The object and container detection step identifies the 

various elements depicted in the sketch using two modules: 

one for detecting individual atomic elements and another for 

identifying containers. Containers are defined as boxes that 

encompass multiple atomic elements, such as buttons or text 

elements. 

For element detection, the YOLO object detector is 

employed to identify elements along with their boundaries, but 

without a hierarchical structure. The object hierarchy is built 

using a sequence of modules that extract hierarchical 

information. This involves merging elements and containers to 

establish the hierarchy. The final stage is HTML code 

generation, where the completed hierarchy is inputted into the 

HTML/CSS generators to generate the corresponding code. To 

train the YOLO models, a diverse and large collection of 

examples is required. The paper also introduces a mechanism 

for generating a large dataset of digital hand-drawn-like 

sketches, commonly known as synthetic sketches.  
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In their study [18], the authors employed YOLOv5, a 

precise and efficient deep learning framework, to automate the 

conversion of hand-drawn GUI mockups into Android-based 

GUI prototypes. The approach proposed in this paper consists 

of three main phases: detection and classification, alignment 

of GUI components, and construction of the GUI layout. 

 

In the detection and classification phase, a pre-trained 

YOLO model is utilized to accelerate the training process and 

improve performance. The custom dataset is then used to fine-

tune the pre-trained model, enabling the detection and 

classification of hand-drawn components in the input image. 

During the alignment of GUI components phase, the detected 

GUI components are aligned using heuristic methods to ensure 

accurate positioning and sizing. The output is a JSON file that 

provides a comprehensive description for each GUI 

component in the processed image.  

Lastly, in the construction of the GUI layout phase, the 

JSON file is converted into an output GUI prototype that 

aligns with the target platform, as shown in Fig. 4. The custom 

dataset consists of images, each containing the same number 

of GUI components, covering all the listed components. The 

dataset comprises 390 training images, with 90% used for 

training and 10% for validation, along with 100 images 

designed for testing. 

 

 
Fig. 4. Architecture of the proposed methodology [18] 

 

B. Mockup-Based Techniques 

The authors of a particular paper [19] introduce Pix2code, 

an application that converts high-fidelity GUI screenshots into 

computer code. They utilize a Deep Learning framework to 

perform this conversion for web-based, Android, and iOS 

platforms. To create the Pix2code dataset, they map bootstrap-

based websites into a Domain-specific language (DSL) 

consisting of 18 vocabulary tokens that describe the website's 

layout and components. The dataset includes 3,500 pairs of 

GUI images and their corresponding DSL code markup. 

 

The core idea behind Pix2code is training a model to learn 

the mapping between a GUI screenshot and the code that 

produces the corresponding GUI. The model comprises two 

main components. First, a Convolutional Neural Network 

(CNN) extracts high-level visual features from the GUI image, 

which are then transformed into a fixed-length feature vector 

using a fully connected layer. Second, a Recurrent Neural 

Network (RNN) with Long Short-Term Memory (LSTM) 

architecture performs language modeling on the DSL code 

related to the input GUI image. Through training, the LSTM 

network grasps the syntax and semantics of the source code, 

generating a language-encoded vector that represents a 

sequence of one-hot encoded tokens corresponding to the DSL 

code. 

 

To solve the problem, the authors propose a three-step 

approach. Firstly, a CNN-based image encoder extracts high-

level visual features from the GUI screenshot and converts 

them into a fixed-length feature vector. Secondly, an LSTM 

network, an RNN architecture, is trained to perform language 

modeling on the DSL code associated with the GUI image. 

This results in the LSTM network understanding the syntax 

and semantics of the code, generating a language-encoded 

vector representing a sequence of one-hot encoded tokens. 

Lastly, an LSTM-based code decoder is used. The vectors 

from the previous steps are concatenated and fed into this 

decoder, which generates accurate code that reflects the layout 

and components of the input GUI image. The LSTM decoder 

learns the relationship between objects in the GUI image and 

the corresponding tokens in the DSL code. 

 

Another methodology described in reference [20] shares 

similarities with the previous method discussed in reference 

[19]. In this approach, a CNN processes the UI image 

representation, which is then encoded by an LSTM into an 

intermediate representation vector. This vector is further 

decoded by a final LSTM to generate the final intermediate 

code. This methodology features a more straightforward 

training strategy as it does not require contextual information 

as input to the network, making it more accessible, as 

illustrated in Fig. 5. 

 
Fig. 5. Architecture of Neural Machine Translator for UI-Image-to-GUI-

Skeleton Generation 

 

Nguyen et al. [21] introduced the pioneering concept of 

automatic reverse engineering of mobile application user 

interfaces (REMAUI). By analyzing screenshots of a mobile 

application's user interface, REMAUI identifies various 

components such as buttons, textboxes, and images, and 

generates the corresponding code. This study marked the first 

instance of employing computer vision and optical character 

recognition techniques, along with mobile-specific heuristics, 

to facilitate the conversion of screen images into code for 

mobile platforms. These applications not only capture the 

structural elements but also consider the style aspects, 

including images, colors, and fonts, of the designs. However, 

despite the successful functionality of the REMAUI method, it 

also exhibits certain limitations.  

 

Moran et al. [22] introduced ReDraw as an extension of 

REMAUI. ReDraw is an algorithm that takes mockups of 
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mobile application screens and generates structured XML 

code for them. The paper presents a three-stage approach to 

automate the conversion of GUI designs into code, comprising 

the Detection, Classification, and Assembly steps. The initial 

stage of their approach involves employing computer vision 

techniques to identify the individual components of the GUI. 

In the second stage, these identified components are classified 

according to their functionality, such as toggle-button, text-

area, and more. Deep convolutional neural networks (CNN) 

are used for this classification task. In the final stage, the XML 

code is generated by combining the outcomes of the previous 

stages with the K-nearest neighbor (KNN) algorithm, which 

organizes the code based on the hierarchy of web 

programming. 

It is noteworthy that the authors of this paper have also 

contributed to the development of a dataset. This dataset 

encompasses 14,382 GUI images, containing 191,300 

annotated GUI segments. It includes 15 classifications, such as 

RadioButton, ProgressBar, Switch, Button, and Checkbox. 

The CNN model mentioned earlier relies on this dataset for 

training and evaluation purposes. 

 

Chen et al. [23] proposed a framework that takes UI pages 

as input and generates the corresponding GUI code for 

Android or iOS as output. The authors initially employ 

traditional image processing techniques, including edge 

detection, to locate the UI elements within the pages. 

Subsequently, they utilize CNN-based classification to 

determine the semantics of the UI elements, such as their 

types. 

The proposed framework comprises three distinct phases: 

component identification, component type mapping, and GUI 

code generation. In the component identification phase, 

components are extracted from the UI pages using image 

processing techniques. Then, a deep learning algorithm based 

on CNN classification is employed to identify the component 

types, such as Button or TextView. The component type 

mapping phase involves mapping the identified component 

types to their respective counterparts in the target platform. 

Finally, the GUI code generation phase generates the final 

implementation code based on the component types and their 

attributes obtained from the previous phases. Notably, the 

component type mapping phase plays a crucial role in the 

framework, utilizing a large map and heuristic rules to 

generate the final code. 

 

Hassan et al. [24] adopted a top-down approach in their 

study to gather information from an image. The first step 

involves extracting and masking the text elements from the 

image using the Canny edge detection algorithm. This method 

detects all the edges in the image, including both the text and 

other UI elements. To eliminate the outlines and boundaries of 

the other UI elements, they applied a median blur technique. 

After the application of dilation, a contour detection algorithm 

is utilized to calculate the bounding box for each text element.  

Next, the original image is masked to preserve only the UI 

elements, and a pre-processing step is employed to extract 

these elements. This step includes resizing the image, 

converting it to grayscale, applying Gaussian blur, binarizing 

it, and thresholding the image. Once the image is transformed 

and thresholded, the contours of the UI elements inside the 

image are identified. The output of this process is a set of 

detected elements segmented into individual images. These 

images are then subjected to a classification step to predict the 

type of UI elements.  

By employing transfer learning, a classification model that 

has been trained on large datasets is used. This pre-trained 

model is then retrained using their own dataset. The model 

produces an output for each element, which includes the 

element's UI type, bounding box information, and extracted 

features. These details are stored in a hierarchical JSON 

format. 

 

In the method proposed by [25], image processing 

technology is employed to detect UI components in the 

application screenshot. Subsequently, the detected components 

are classified using a customized CNN. To train the CNN, a 

ReDraw dataset was randomly sampled. To identify UI 

components in the screenshot image, a series of image 

processing steps are applied, including grayscale conversion, 

filtering, thresholding, dilation, and closing. The Flood-Fill 

algorithm is then utilized to differentiate between distinct 

sections in the GUI. These detected GUI sections are then 

analyzed to determine the hierarchical relationships between 

them. Next, the UI components and GUI sections are 

segmented and separated based on the size of the detected 

areas. Finally, the UI components are classified into generic 

classes that correspond to the ReDraw dataset. The dataset 

was constructed by randomly sampling 2,500 images from 

each class from ReDraw dataset, which were then divided into 

training (70%), validation (20%), and test (10%) datasets.  

 

Introduced in 2020, UIED [26] is a GUI element detection 

toolkit designed to detect GUI elements using an image-based 

approach. It provides users with a platform where they can 

upload their GUIs and automatically detect and identify the 

elements present within them. The toolkit offers a web 

interface for user convenience. The approach proposed by [26] 

divides the detection task into two main parts: non-text 

element detection and text detection. Traditional computer 

vision algorithms are employed to extract non-text regions, 

while deep learning models are utilized for classification and 

text detection. 

To detect non-text elements, the approach makes use of the 

Flood-Fill and Sklansky algorithms to identify potential layout 

blocks. The image is then subjected to edge detection and 

transformed into a binary map representation. The binary map 

is further segmented into block segments based on the 

previously detected blocks, and the connected component 

labeling algorithm is applied to detect GUI elements within 

each block. These detected elements are subsequently 

classified using a ResNet-50 model that has been trained on a 

dataset consisting of 90,000 GUI elements divided into 15 

distinct classes. For text detection, the approach employs the 
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advanced EAST OCR (Optical Character Recognition), which 

is a deep learning-based scene text detector capable of 

accurately identifying text within the screenshot image.  

 

Screen Recognition [27] is a system that generates metadata 

describing UI components based on a single GUI image. This 

metadata is then utilized by iOS VoiceOver to enhance 

accessibility. The system is specifically optimized for mobile 

devices, ensuring efficient memory usage and fast 

performance. To achieve this, deep learning techniques are 

employed, leveraging a dataset of iPhone applications. The 

authors of the study created a comprehensive dataset by 

manually downloading the top 200 most popular applications 

from each of the 23 categories (excluding games). Screenshots 

of visited UIs, along with their associated metadata such as 

tree structure and properties of UI elements, were collected. 

However, due to incomplete data, manual annotation was 

necessary. A group of 40 individuals annotated all UI 

elements in the collected screenshots using bounding boxes 

and identifiers, resulting in a dataset comprising 77,637 

annotated UI screens. 

The UI detection model within the system is designed to 

extract elements from the GUI and classify them accordingly. 

To accomplish this, an SSD (Single Shot MultiBox Detector) 

model with a MobileNetV1 backbone is employed. After the 

inference process, the output undergoes post-processing to 

eliminate unnecessary detections. Additionally, the system 

utilizes a built-in OCR (Optical Character Recognition) 

service to identify any missing elements. However, since the 

detector generates separate bounding boxes for each element, 

it is necessary to group the UI elements. This grouping task is 

achieved using hard-coded heuristics that have been 

empirically acquired from a randomly selected sample of 300 

cases.  

 

IV. METHODOLOGIES 

This section classifies the primary methodologies used to 

convert wireframes or mockups into source code. At the time 

of writing, these techniques have been categorized into five 

distinct methodologies. 

A. End to End Methodologies 

This methodology involves a complete end-to-end 

approach, where a deep learning model is used to process the 

mockup or wireframe and generate source code that can be 

transformed into a user interface. This approach takes 

inspiration from the way deep neural networks (DNNs) are 

interconnected to generate textual descriptions (DSL code) 

from an image. Successful implementation of this technique 

often relies on having access to sizable datasets with specific 

characteristics needed to train the models. Therefore, it is 

often necessary to develop or utilize datasets that meet these 

criteria. These datasets typically consist of a large collection 

of wireframes or mockups in image form, along with their 

corresponding code. 

 

Broadly speaking, this methodology can be divided into 

three sub-problems. The first is a computer vision problem, as 

it needs to understand an image and infer the identified objects 

and their properties. The second is a language modeling 

problem, as it needs to understand text and generate 

syntactically and semantically correct code. Finally, the 

system utilizes solutions from the previous two sub-problems 

to link the identified objects with their corresponding textual 

descriptions. This allows the system to be trained and generate 

DSL code for the GUI image. 

 

Beltramelli's work [19] is considered the first to utilize this 

methodology, which has since inspired numerous authors to 

propose various approaches for reverse engineering UI designs 

into code. Chen [20] improves upon Beltramelli's [19] work 

by not requiring contextual information as input to the 

network. In one of its two approaches, [16] employs the same 

technique as [19], but applied to wireframes instead of 

mockups. 

 

B. Object Detection Methodologies 

Object detection involves identifying, labeling, and defining 

the boundaries of objects in an image to improve their 

recognition. This methodology enables a computer to locate 

and identify objects within an image and gather data about 

their positions. Unlike image classification, which only labels 

images containing a specific object (such as a button), object 

detection creates bounding boxes for each detected object in 

the image. This means that an image with two buttons would 

have separate boxes and labels for each button. Fig. 6 

illustrates that an image may contain multiple boxes. 

 
Fig. 6. Detected and recognized elements with bounding boxes. 

 

Convolutional neural networks (CNNs) are well-suited for 
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object detection and are considered highly effective algorithms 

for this purpose. Deep learning methods provide advanced 

approaches to accurately recognize objects. CNN-based object 

detection approaches can be broadly categorized into two 

types: two-stage detectors, exemplified by Region-based CNN 

(R-CNN) and its various adaptations (such as Faster R-CNN), 

and one-stage detectors, including SSD, RetinaNet, and 

YOLO. 

The study presented in [14] employed a two-stage detector 

in their approach, as they are known for their higher accuracy 

rates despite being significantly slower and unsuitable for real-

time applications. In contrast, studies [12, 13, 15, 16, 17, 18, 

27] utilized one-stage detectors in their approaches, as they 

offer faster processing speeds and can be used in real-time 

applications, albeit at the cost of lower accuracy rates. It is 

worth noting that approaches using object detectors to detect 

elements in an image often require heuristic methods to 

determine the hierarchy and layout of these elements. 

 

C. Heuristic Based Methodologies 

These methodologies achieve the extraction of constituent 

elements in a wireframe or mockup through the iterative 

execution of a sequence of procedures. These procedures 

involve the utilization of "classic" computer vision algorithms, 

including traditional techniques such as edge/contour 

detection, image resizing, grayscale conversion, Gaussian blur 

application, filtering, thresholding, and morphological 

operations like erosion, dilation, opening, closing, and 

boundary extraction. Fig. 7 provides an example of these 

computer vision techniques. 

 
Fig. 7. Example of the computer vision techniques applied on a given mockup 

by Nguyen et al. [21]. 

 

Nguyen et al. [21] were the pioneers in utilizing computer 

vision and optical character recognition techniques to convert 

GUI screenshots into application code. Similar techniques 

were also employed in other studies, such as [8, 28, 29]. While 

effective for simple GUIs, these techniques may have 

limitations when dealing with complex GUI layouts or images 

with gradient backgrounds or photographs. It is important to 

note that some of these techniques are used as an initial step in 

other segmentation approaches to facilitate the process of UI 

element classification. 

 

D. Hybrid Based Methodologies 

These methodologies typically begin by using traditional 

computer vision techniques (Heuristic-Based Methodologies) 

to extract the location of UI elements. Subsequently, CNN-

based classification is utilized to determine the type (class) 

and other semantic attributes of the UI elements. 

 

Broadly speaking, this methodology can be divided into two 

primary principles: detection and classification. In the 

detection stage, computer vision techniques such as image 

processing, morphological operations, and contour detection 

are employed to identify rectangles that correspond to each UI 

element in the GUI image. At this stage, the system can only 

detect the presence of an element without being able to 

classify it. These rectangles (UI elements) are then segmented 

and cropped for the classification stage. After the detection 

step, the detected elements are subjected to a classification 

phase, where each element is classified using a pre-trained 

CNN on a dataset of real-world examples. 

 

This approach can be referred to as "Data-Driven 

Methodologies" since it heavily relies on data for UI element 

classification. Having a large and diverse dataset is crucial for 

successfully training CNN models to classify UI elements. 

The quality and quantity of the training data significantly 

impact the accuracy of the classification results, as CNNs rely 

heavily on data for learning. Additionally, data augmentation 

or the creation of synthetic datasets can also be beneficial for 

training CNN models. 

Several studies, as cited in [9, 22, 23, 24, 25, 26], have 

adopted this approach. However, grouping and linking UI 

elements to determine hierarchy and layout are not 

automatically obtained and require the use of heuristic rules. 

 

V. EVALUATING METHODOLOGIES: RESULTS AND 

LIMITATIONS 

This section consists of two parts: a discussion of the results 

obtained from the methodologies and a discussion of their 

limitations.  

A. Limitations 

Our discussion will focus on the weaknesses and limitations 

of the approaches utilized in previous related works. Hassan et 

al.'s study [24] has certain limitations, including a text 

identification step that may produce false positives, and these 

false positives cannot be eliminated with median blur. 

Additionally, the approach is sensitive to gradient variations, 

which can have a negative impact on contour detection. In 

Nguyen et al.'s study [21], the use of computer vision 

techniques also has limitations. For instance, the process of 

extending the techniques to identify new elements is time-

consuming, and programmers need to manually engineer 

features to classify all new elements. 

 

Beltramelli's study [21] identifies the main drawback of 

their approach as the continuous maintenance required for the 

DSL. This adds complexity and effort to the practical 

utilization of the approach. Furthermore, the DSL relies on a 

fixed set of UI components and a limited set of style 

properties, such as color. Consequently, it is not designed to 

handle the wide variety of component types, styles, and 



Informatics Bulletin, Helwan University, Vol 6 Issue 2, July 2024 77 

arrangements present in many example screenshots. Both 

Aşıroğlu et al. [9] and Robinson [10] limit their consideration 

of GUI elements to a small number of types. Aşıroğlu et al. 

only consider TextBox, Dropdown, Button, and Checkbox, 

while Robinson focuses on images, paragraphs, titles, inputs, 

and buttons. This narrow focus restricts the practical 

applicability of their proposed models, as effective approaches 

should be capable of detecting all types of GUI elements 

found in the relevant interface. 

 

Chen et al. [20] observe a strength in their study, which is 

the reliable detection of text elements in GUI images, even 

when the texts are written in different languages. However, the 

model has weaknesses that can result in reduced accuracy 

when dealing with very simple GUI skeletons (those with 10 

or fewer components, 3 or fewer containers, and/or 3 or fewer 

levels of depth). Additionally, the model may struggle to 

distinguish small UI elements positioned on top of complex 

images. In the study [23], it was noted that the detected GUI 

elements were not identified, and applying the heuristic rules 

required significant manual effort, without offering direct code 

generation. The study [23] also highlights that only four 

components (textbox, textarea, checkbox, and button) were 

used to detect UI elements, which can limit the usefulness of 

the approach. Moreover, all UI components were assumed to 

be left-aligned. 

 

One limitation of the approach presented in this study [14] 

is the variable inference time, ranging from 0.2 seconds to 1.7 

seconds, which increases with the number of elements present 

on a page. Additionally, images captured under low-light 

conditions, where pixels are darker, can further increase the 

inference time. The study [10] identifies only five UI elements 

(Button, RadioButton, CheckBox, Textbox, and Text) in the 

wireframes, which restricts the scope of their work. 

Furthermore, the literature does not prioritize the detection of 

containers in hand-drawn mockups, despite the fact that even 

with human-drawn wireframes, there may be small 

misalignments or gaps in the final design, making the 

extraction of containers challenging. 

 

The study [15] utilized a small dataset comprising only 50 

sketches, with a total of 600 GUI elements, which can impact 

the accuracy of the results. Moreover, the study lacked 

detailed information regarding the results and the evaluation 

of accuracy. In the work presented in [25], the precision of the 

proposed classifier is suboptimal, considering the number of 

classes in the dataset. Additionally, the detection of UI 

components relies on traditional computer vision techniques, 

and the detected contours require post-processing for 

consistent results. In [26], UIED achieves a low accuracy F1 

score of 52% on 5,000 UI images from the Rico dataset. 

Furthermore, the element detection algorithm is not suitable 

for noisy images, as it relies on clean input images. 

Additionally, GUIs with open designs (not perfectly closed 

regions) may be incorrectly identified as one large region. 

 

The study [16] does not include recognition of internal 

elements in the side navigation bar, limiting the approach's 

scope. Furthermore, only a subset of Bootstrap components, 

including images, videos, buttons, navigation bars, and tables, 

are covered due to the large number of sketches required to 

support all components, further restricting the work. The study 

[17] discovered that the final system is vulnerable to changes 

in camera perspective, which can result in misaligned 

boundaries and incorrectly rotated images. Additionally, in the 

system evaluation, certain components, such as checkboxes 

and annotation elements, still require further improvement to 

achieve an acceptable log-average miss rate (LAMR).  

 

Regarding Microsoft AI Lab Sketch2Code [11], the quality 

of the input sketches was found to significantly impact the 

generated output. It is also important to note that Sketch2Code 

has predefined icons and options it can recognize, meaning 

designers must adhere to a specific syntax when creating 

sketches. Deviating from this syntax may lead to undesired 

results. 

 

The approach proposed in [18] is unable to handle text in 

hand-drawn wireframes. In [12], the Eve tool does not support 

the use of pen and paper for sketching. Instead, it provides a 

digital canvas for sketch creation, which may influence the 

design process. In screen recognition [27], the elements are 

grouped using hard-coded heuristics that require continual 

improvement to enhance accuracy. Additionally, approaches 

like Screen Recognition and others that rely on heuristics are 

not capable of generating "deep" trees or producing new and 

complex structures. REDRAW [16] can only detect and 

assemble a specific set of stylistic details from mockup 

artifacts, such as background colors, font colors, and font 

sizes. Therefore, there is a need to expand the range of stylistic 

details that can be inferred from a target mockup artifact. 

 

B. Methodologies Results 

The approaches primarily focus on developing interfaces for 

web and mobile platforms. Most of these approaches are 

specifically tailored for designing web-based GUIs, followed 

by GUIs for the Android platform. A smaller number of 

approaches are dedicated to developing GUIs for iOS 

applications [27]. Additionally, some research studies have 

proposed a multi-platform approach for designing interfaces 

that can be used across all three platforms [13, 19]. The 

number of GUI elements detected in interface design varies 

significantly across different approaches. Some approaches 

detect a small set of 4 to 5 elements, as observed in [9, 10, 14], 

while others handle more extensive sets like the 15 GUI 

elements in [22, 26] or the 19 GUI elements of Material 

Design, as described in [12]. The majority of existing 

approaches primarily focus on identifying the type and 

location of GUI elements and do not attempt to comprehend 

handwritten text, as seen in [19, 10, 18]. However, approaches 

that do extract handwritten content from text-based GUI 

elements often employ Optical Character Recognition (OCR) 



Informatics Bulletin, Helwan University, Vol 6 Issue 2, July 2024 78 

techniques as demonstrated in [26, 13, 22]. 

 

Regarding datasets, most studies have developed their own 

datasets as an integral part of their research, as evidenced by 

[10, 12, 20, 23, 27]. In contrast, a smaller number of studies 

have utilized pre-existing datasets as [1, 25, 26]. The majority 

of research studies crawl online stores or websites to collect 

web pages or mobile applications and then automate the 

process of capturing screenshots. In some cases, GUI images 

are synthetically generated by randomly populating an image 

with sampled UI elements placed at random locations [12]. 

Alternatively, some studies use GUI screenshots to 

automatically generate sketches. 
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The evaluation methods employed by each approach differ 

significantly in terms of metrics and criteria. Most approaches 

utilize metrics that prioritize the performance of object 

detection, focusing primarily on accuracy, followed by 

precision, recall, and F1 value. This differs from the 

conventional notion that mean Average Precision (mAP) is the 

most appropriate performance metric for multi-class object 

detection, a metric only used by a small number of studies [12, 

TABLE I 

OVERVIEW OF THE COVERED STUDIES IN THIS PAPER 

Reference Platform 
Input 

type 

Output 

type 
Dataset 

Detected 

elements 

Technique 

utilized 
Evaluation results 

[9] Web Sketch HTML 
Images from 

Sketch2Code [11] 
4 elements Hybrid Based 

The model achieves 96% method 
accuracy and 73% validation 

accuracy. 

[10] Web Sketch 

GUI 
hierarchical 

skeleton 

JSON 

Screenshots from 

1,750 URLs 
5 elements Hybrid Based 

F1 score varies from 0.548 

(paragraph) to 0.811 (image) 

[12] Android Sketch 
Markup-like 
DSL XML 

code 

UISketch dataset and 

Syn-dataset 

19 Material 
Design 

elements 

Object 

Detection 
84.9% mAP with 72.7% AR 

[13] 
Android, 
iOS, and 

Web 

Sketch HTML 
149 sketches, 2,001 

of GUI elements 
10 elements 

Object 

Detection 

The inference time ranges from 0.2 
sec to 1.7 sec increasing with the 

number of elements on a page. 

[14] Web Sketch HTML/CSS NA 5 elements 
Object 

Detection 

The accuracy is 91% and recall rate 

86% of GUI object detection 

[15] NA Sketch 

Markup-like 

DSL XML 

code 

50 sketch images 

including ~ 600 

elements 

NA 
Object 

Detection 
NA 

[16] Web Sketch HTML/CSS 
1100 images, 1000 
for training and 100 

for testing. 

5 elements 
from 

bootstrap 

Object 

Detection 

Yolo achieved an 88.28% accuracy 

in the test set 

[17] Web Sketch HTML/CSS 

8400 mockups image 
Then, fine-tuning it 

using 100 real hand-

drawn images 

9 atomic 

elements and 
containers 

Object 

Detection 

The detection performance of our 

approach achieved a mAP score of 
95.37%, 

[18] Android Sketch XML script 

390 images for 

training (90% 

training and 10% 
validation) and 100 

images for testing. 

13 element 
Object 

Detection 

recognition accuracy of 98.54% 
when tested on various hand-drawn 

GUI structures designed by five 

developers 

[19] 

Android, 

iOS, and 

Web 

GUI 
screenshot 

Markup-like 
DSL Code 

Pix2code dataset 

(1,750 Android, 
1,750 iOS, 1,750 

Web) 

NA End-to-End 

Pix2code can automatically 

generate code from a single input 
image with over 77% accuracy for 

three different platforms 

[20] Android 
GUI 

screenshot 

Markup-like 

DSL  

185,277 pairs of GUI 
images and GUI 

skeletons 

NA End-to-End 
Accuracy: 60.28% , The average 

BLEU score is 79.09 

[21] 
Android, 

iOS 
GUI 

screenshot 
mobile 

application  
NA text or images Heuristic Based 

488 screenshots of third-party 

applications showed that the UIs 
generated by REMAUI were similar 

to the original ones. 

[22] Mobile 
GUI 

screenshot 

GUI 

hierarchical 
skeleton 

REDRAW - 14,382 
GUI screenshots and 

191,300 labeled GUI 

elements 

15 element Hybrid Based 

CNN precision is 91.1%, 

outperformed both REMAUI and 
pix2code in MAE 

[23] 
Android, 

iOS 

GUI 

screenshot 

Markup-like 
DSL  code 

(Android or 
iOS) 

1,842,580 unique 

Android screenshots 
NA Hybrid Based 

The CNN classification achieving 

more than 85% accuracy 

[24] 
mobile and 

web-based 

GUI 

screenshot 

hierarchical 

JSON format 
NA 

6 elements 

and text 
Hybrid Based validation accuracy of 90.2% 

[25] Mobile 
GUI 

screenshot 

Detected 
component 

marked on the 

image 

ReDraw Dataset 

(2500 images) 
14 element Hybrid Based 

The classification accuracy is up to 

96.97%, precision rate is 86.4%, 
and recall rate is 86.4% 

[26] Web 
GUI 

screenshot 
Stored in a 
JSON file 

Rico - 90,000 GUI 
elements 

15 element Hybrid Based 
F1 score of 52% on 5,000 UI 
images from the Rico dataset 

[27] 
Mobile 

(iOS) 

GUI 

screenshot 

UI elements 

with apple 
voice over 

GUIs from 4,239 

iPhone applications 
(77,637 UI screens) 

12 element 
Object 

Detection 

The model’s weighted mAP (IOU > 

0.5) is 87.5%. 
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17, 27]. Some approaches also assess the similarity between 

the generated GUI and the original GUI, either in terms of 

visual similarity at the pixel level or structural similarity by 

comparing the hierarchical tree structure. In certain cases, 

similarity is evaluated manually by the researchers or by GUI 

designers/developers. Overall, the reported accuracy varies 

across studies, ranging from the mid-70s to the upper 90s on a 

percentage scale. However, there can be significant variations 

in the accuracy of detecting different types of GUI elements. 

For example, in a study [10], the accuracy for paragraphs was 

found to be 0.562, while the accuracy for images was 0.896.   

 

Accuracy is a metric that measures how correct the model's 

predictions are. It is calculated by dividing the number of 

correct predictions by the total number of predictions. 

Precision, on the other hand, focuses on accuracy by 

indicating the proportion of true positives to the total number 

of predicted positives. False positives occur when an object is 

incorrectly identified as present in an image when it is not. 

Recall measures completeness by indicating the proportion of 

true positives to the total number of actual positives. False 

negatives occur when an object that is present in an image is 

not identified. The F1 score provides a balance between 

precision and recall by calculating their harmonic mean. A 

high F1 score indicates both precision and completeness. It is 

used when both precision and recall are important. 

 

Average Precision (AP) is a commonly used metric for 

evaluating object detection models. It calculates the average 

precision at different levels of recall and is typically assessed 

for each object class individually. To compare performance 

across all object classes, the mean Average Precision (mAP) is 

often used as the final metric, which calculates the average AP 

across all classes. 

 

Visual similarity between generated applications and 

mockups can be evaluated using metrics like mean squared 

error (MSE) and mean absolute error (MAE) by comparing the 

pixel values in screenshots of the generated applications with 

the original mockup screenshots. Minimizing MSE and MAE 

on test examples indicates high visual similarity. BLEU 

(Bilingual Evaluation Understudy) is another metric used to 

evaluate the similarity between machine-generated translations 

and human-created reference translations. 

 

Table 1 provides a concise summary of the studies covered 

in this paper, including information on the platform, input 

type, output type, dataset, detected elements, technique used, 

and evaluation results for each study. 

VI. CONCLUSION 

Generating frontend code from image designs, such as 

wireframes or mockups, is a challenging task that requires a 

visual understanding of the images to detect UI elements and 

their hierarchy. This literature review provides an overview of 

various techniques and approaches that employ different 

methods, such as deep learning or computer vision, to 

automatically generate source code and accelerate the UI 

design process. Deep learning approaches proved to be well-

suited for this task and achieved higher accuracy compared to 

relying solely on computer vision techniques. However, the 

use of diverse evaluation measures in this research indicates a 

lack of a standardized evaluation framework. Furthermore, the 

absence of standardized and high-quality datasets hinders 

effective comparison of approaches and future work in this 

field. 
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