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Abstract — Federated Learning (FL) refers to a groundbreaking 

paradigm for distributed machine learning (ML), ensuring model 

training without compromising the privacy of local data. Despite 

its promise, FL suffers from some challenges, involving concerns 

over direct data leakage, the potential of compromising the model 

architecture privacy, and the overheads associated with 

connection and communication. This paper shows an in-depth 

study of FL, and its categorization according to the data 

partitioning formats such as horizontal FL, vertical FL, and 

federated transfer learning. A thorough examination of FL models 

is given, highlighting the need to incorporate strong privacy and 

security protections inside FL frameworks and illuminating the 

inherent difficulties these models present. The paper also examines 

previous research on  FL, on how integrating security techniques 

to improve  FL systems' general effectiveness. By consolidating 

current knowledge, the paper provides a roadmap for future 

directions, highlighting the possible solutions in mitigating 

challenges and advancing privacy-preserving federated learning. 

 

Index Terms— Machine Learning, Federated Learning, 

Privacy,  Security 

I. INTRODUCTION 

ecently, the increase of interconnected machines has 

generated massive data, commonly stated as big data. This 

rise in data generation, combined with growing concerns about 

privacy and devices' computational capabilities, has led to an 

imperative for localized data processing and storage [1], [2]. 

Artificial intelligence (AI) emerges as a pivotal element in 

unlocking the full potential of big data, steering the trajectory 

of machine intelligence and infrastructure efficiency toward an 

imminent future. ML constitutes a vital branch of AI, 

employing computational systems for making sense of data 

through pattern extraction, data fitting to functions, and data 

classification. ML systems possess the capability to learn and 

enhance their performance over time through the assimilation 

of historical data and accumulated experience. They depend on 

centralizing data in a singular location, typically within a 

central cloud data center [3], [4]. However, the conventional 

approach in machine learning involves consolidating data in a 

central cloud data center, a practice that raises significant 

concerns regarding the privacy of users and data confidentiality, 

as underscored by rules like The European Union’s General 

Data Protection Regulation (GDPR) and the Health Insurance 

Portability and Accountability Act (HIPAA)[5] [6]. The crucial 

importance of security and privacy in applications of 

technology has led to a paradigm change towards 

decentralization, to be applied in data collection and processing 

operations. FL  provides a pivotal role for mitigating concerns 

regarding to security and privacy of data in the filed of  ML. 

This innovative approach enables training the model locally on 

different devices independently, ensuring that sensitive data 

never quits its source. By decentralizing the learning process, 

federated learning minimizes the risks connected to centralized 

data storage and transmission. This not only safeguards user 

privacy but also addresses the potential vulnerabilities 

associated with data breaches. Federated learning fosters a 

collaborative model where machine learning models are trained 

collectively from decentralized data sources, promoting a more 

secure and privacy-preserving environment in the rapidly 

evolving landscape of artificial intelligence [7]. This paper 

introduces a study about the idiom, benefits, and categorization 

of FL and understands the issues related to FL.  

 

Furthermore, The remainder of this paper is structured into 

four sections: Section II offers background about the main 

concepts, including machine learning, and federated learning. 

Section III shows a detailed overview of federated learning 

methodology. Section IV discusses the literature review with 

the main findings and presents the appropriate guidelines for 

further research directions in recent literature. Section V 

conclusion of this paper. 

II. BACKGROUND 

This section highlights the essential points discussed in this 

research paper, including the hierarchy from centralized ML  to 

FL signifies a change in the way ML models are trained and 

deployed.  

Machine learning is an aspect of AI which enables machines 

to learn from historical data regardless of explicit programming. 

Its widespread application has significantly impacted various 

aspects of human life by utilizing large volumes of daily 

generated data to train models, enhancing the quality of 

services[8]. The process involves collecting reliable data, 

identifying patterns, preprocessing data, training models, 

evaluating them, tuning hyperparameters, and deploying 
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predictions. Techniques of ML like supervised, 

unsupervised, semi-supervised, and reinforcement learning, 

enable computers for autonomously learning and making 

predictions[9]. Figure 1 presents the workflow of ML by 

running on the cloud as a centralized location to train the model 

according to the collected data, so it achieves getting a 

generalization model with the need for a high level of stable 

communication channel and saving the data privacy. However, 

challenges arise, including the potential strain on 

communication resources during data transmission and 

concerns about privacy breaches when raw data is transferred 

to central servers to train the model[10]. The key factors for a 

successful machine learning model are security and data 

privacy, essential for optimal performance and usefulness in 

future predictions[11]. 

 

Figure 1:Machine Learning Workflow 

A. Distributed on-site Learning 

Distributed on-site Learning refers to a system where 

learning processes, particularly those comprising machine 

learning or data analysis, are spread over various on-site or local 

devices rather than being centralized. This methodology can 

involve training models on data available locally at various 

distributed locations, promoting privacy, reducing data 

transmission requirements, and addressing latency concerns. It 

might incorporate concepts from distributed systems and 

machine-learning techniques that operate on local data 

sources[12] [13]. 

Figure 2 presents the workflow of this methodology where 

each device builds its model depending on its local dataset, just 

gets the model from the cloud source, and then no 

communication channel is needed between them. The main 

advantages of this methodology are the ability of models to 

adapt to changes over time, the lack of dependence on an 

internet connection, and no need to upload private information 

to the cloud. 

 

 

Figure 2: Distributed on-site Learning Workflow 

 

B. Federated Learning  

FL is a groundbreaking technique of  ML which 

revolutionizes traditional centralized models. Unlike 

conventional methods where data is gathered and processed in 

a centralized server, federated learning distributes the learning 

process across decentralized devices. This innovative paradigm 

allows devices such as smartphones, IoT-connected devices, or  

servers to train a shared machine-learning model without 

sharing  data[12][13]. 

In federated learning, the model is initially generated on a 

central server and then sent to individual devices. These devices 

process the model locally using their respective data and only 

share the model updates, instead of the actual data, back to 

central server. This privacy-preserving technique addresses 

concerns about the security and privacy of data, because of the 

sensitive information remains on users' machines[12]. Figure 3 

presents the workflow of FL and how it offers several 

advantages, including reduced communication costs, enhanced 

privacy, and the ability to learn from diverse datasets without 

centralized data aggregation. This approach is especially 

valuable in scenarios in which data is decentralized, like in 

healthcare, finance, or edge computing environments, fostering 

collaborative machine learning while keeping privacy and  data 

security[14]. 
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Figure 3:Federated Learning(FL) Workflow 

Table 1 shows the main differences between ML and FL 

based on centralization, data handling, communication, data 

privacy, and collaboration. 

 
TABLE 1  

MACHINE LEARNING VS. FEDERATED LEARNING 

 Machine Learning Federated Learning 

Centralization Centralized processing Decentralized learning 

Data Handling Large, centralized dataset Diverse datasets on 

individual devices 

Communication Constant communication 

with a central server 

Reduced 

communication with 

only model updates 

Privacy Potential privacy 

concerns 

Privacy-preserving with 

only model updates 

shared 

Collaboration Limited collaboration due 

to centralization 

Enables collaborative 

learning without central 

data aggregation 

 

The shift from centralized to FL is prompted via the necessity 

for privacy-preserving ML, especially in applications like 

mobile devices, healthcare, and edge computing. FL allows 

model training  avoiding disclosing raw data, making it suitable 

for situations where data cannot or should not be centralized. 

The choice between centralized, distributed, decentralized, or 

federated learning depends on factors such as privacy 

requirements, data distribution, and communication constraints. 

 

III. FEDERATED LEARNING METHODOLOGY 

In the next section, the focus will be on the details of FL 

methodology, its classifications, and applications adopted by 

recent studies to get the benefit of FL . 

A. Federated Learning workflow 

Federated Learning is defined as a machine learning 

technique which allows a model to be trained across various 

decentralized devices or servers keeping local data samples 

without sharing them [15]. This enables the training of models 

without centralizing sensitive data. Figure 4 presents a detailed 

workflow of  FL: 

 

Figure 4: A detailed workflow of  Federated Learning 

This detailed workflow highlights the key steps as following 

[13][16][17]:  

Initialization: Select the model architecture and 

hyperparameters that will be used for training. Initialize a 

global model on a central server or in a cloud environment. 

Data Partitioning: Distribute the data across multiple machines 

or servers. Each machine keeps an aspect of the dataset, and the 

data remains localized, preventing the necessity for it to be sent 

to a central server. 

Local Model Training: Each device performs local model 

training depending on its data. This involves computing the 

gradient of the model parameters concerning the local data and 

updating the local model. 

Model Update Aggregation: After the process of local training, 

the local models' parameters are not centrally transmitted to the 

server. Instead, only the model updates (gradients) are 

transmitted. Aggregation functions such as federated averaging 

or secure aggregation are used for combining these updates into 

a global update without exposing the individual updates. 

 

Global Model Update: The aggregated global update is 

employed as the global model, updating its parameters. This 

step ensures that the global model improves based on the 

knowledge learned from all corporating machines. 

 

Communication Rounds: Steps 3-5 are recurred for a 

predetermined set of communication rounds. During each 

round, the machines perform local training, send modifies to the 

central server, and the server updates the global model. 
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Model Evaluation: Periodically, the global model's 

performance is assessed on a validation set to monitor its 

generalization to new data and to ensure that it is learning 

meaningful patterns. 

 

Termination Criteria: The training process progresses until a 

predefined convergence criterion is matched, like achieving a 

certain degree of accuracy or after a fixed number of 

communication rounds. 

 

Model Deployment: Once training is complete, the final global 

model can be performed for making predictions on new data. 

The model can be used on the central server or published to the 

local machines, depending on the application. 

 

Privacy and Security Measures: Throughout the process, 

privacy and security measures must be in place to protect 

sensitive information. Techniques like differential privacy, 

secure aggregation, and encryption can be performed for 

enhancing privacy. 

 

Federated Learning presents a powerful paradigm to train ML  

models in a decentralized manner, leveraging the incorporative 

knowledge across various machines while preserving data 

privacy[18]. The workflow involves initializing a global model, 

partitioning data across local devices, and iteratively 

exchanging model updates without exposing raw data. This 

collaborative approach enables the creation of robust models 

without centralizing sensitive information. 

The iterative nature of communication rounds and model 

updates allows the global model to learn from diverse data 

sources, leading to enhanced generalization and performance. 

Privacy and security measures, like  differential privacy and 

secure aggregation, play a vital role in assuring the protection 

of sensitive information throughout the training process[19]. 

 

Federated Learning finds applications in scenarios where data 

is distributed across devices or entities, such as mobile devices, 

edge devices, or in healthcare settings. The deployment of the 

final model can occur centrally or be distributed, depending on 

the use case[20]. 

 

Despite its promising advantages, Federated Learning also 

poses challenges, including communication overhead, potential 

model performance disparities across devices, and the need for 

robust privacy-preserving techniques. Ongoing studies and 

development are required to overcome these issues and improve 

the FL framework[21]. 

 

In summary, Federated Learning stands as a roadmap of ML, 

privacy, as well as distributed systems, offering a promising 

avenue for collaborative model training while respecting the 

privacy concerns inherent in decentralized data environments. 

As technology continues to evolve, federated learning is poised 

to become an integral part of the machine learning landscape, 

facilitating the development of robust and privacy-aware 

models across various domains. 

Figure 5 summarizes and presents the main advantages and 

disadvantages of machine learning and federated Learning.  

 

 

 

 
Figure 5: Pros and Cons of Machine Learning Vs Federated Learning 
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B. Federated Learning Classification 

     Different factors affect FL classification which impacts the 

performance and effectiveness of federated learning 

classification including architecture alternatives, data 

partitioning, machine learning model, scale of federation, and 

privacy mechanisms. 

 

 

1) Architecture Alternatives 

The federated learning can be implemented using different 

architectural approaches representing different organizational 

structures for implementing FL systems as following 

centralized, hierarchical, regional, and decentralized[22][23]: 

i. Centralized Architecture[22]: 

• Characteristics: In a centralized architecture,  a single 

central server or coordinator manages the entire 

federated learning process. 

• Workflow: The central server is in charge of 

aggregating and coordinating the learning models 

from all collaborating machines in the network. 

• Advantages: Simplicity in coordination and model 

aggregation. The central server has complete control 

and visibility over the learning process. 

• Challenges: Privacy concerns may arise as all raw data 

may need to be transmitted to the central server, 

raising potential security issues. 

ii. Decentralized Architecture[12]: 

• Characteristics: During a decentralized architecture, 

there is no central server or coordinator. Each 

participating device or node communicates directly 

with others. 

• Workflow: Nodes collaborate directly for model 

updates without a central coordinator. This can be 

achieved through techniques like peer-to-peer 

communication. 

• Advantages: Maximized privacy as there is no need 

for a central entity to have access to raw data. It can be 

more resilient and scalable in certain scenarios. 

• Challenges: Communication and coordination can be 

challenging in a fully decentralized setup. Ensuring 

convergence and model consistency without a central 

entity requires sophisticated algorithms. 

 

iii. Hierarchical Architecture[24]: 

• Characteristics: The hierarchical architecture 

introduces a multi-level structure, with different levels 

of coordination. It may include multiple levels of 

servers or coordinators. 

• Workflow: Higher-level coordinators may aggregate 

information from lower-level ones, and the process 

continues until reaching the top-level coordinator. 

• Advantages: Provides a balance between centralized 

control and distributed processing. It can be useful for 

managing large-scale federated learning systems. 

• Challenges: Increased complexity in coordination 

compared to the centralized approach. The design of the 

hierarchy may impact communication efficiency. 

iv. Regional Architecture[25]: 

• Characteristics: In a regional architecture, the 

federated learning system is divided into regions, each 

with its own coordinator. 

• Workflow: Coordinators at the regional level manage 

the federated learning within their respective regions. 

They may interact with each other to exchange global 

model updates. 

• Advantages: Can enhance scalability and reduce 

communication overhead compared to a purely 

centralized approach. It allows for more localized 

control. 

• Challenges: Coordination between regional 

coordinators and maintaining a globally consistent 

model can be challenging. 

Each architecture has its own trade-offs in terms of 

communication efficiency, scalability, privacy, and 

complexity. The selection of architecture often based on the 

specific needs and limitations of the FL application. 

2) Scale of Federation 

The scale of federation refers to the extent of collaboration 

and the complexity of the federated learning system. As the 

scale increases, challenges related to communication, 

heterogeneity, and privacy become more prominent and need 

careful dedication in the design and execution of FL 

systems[21]. The federation scale is divided mainly into two 

categories which are cross-silo and cross-device. In the context 

of cross-silo and cross-device federated learning, it involves 

understanding the scope and complexity of collaboration across 

different organizational silos and diverse types of devices[26]. 

3) Privacy Mechanism 

Privacy mechanisms in FL aim to preserve the privacy of 

individual data whilst facilitating collaboration model 

training over decentralized devices. Key mechanisms include 

local model updates (sharing only model updates, not raw 

FL Architecture

Scale of Federation

Privacy Mechanism

Data Partitioning
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data), differential privacy (adding noise to prevent individual 

identification), secure aggregation (ensuring private 

aggregation of updates), homomorphic encryption (allowing 

computations on encrypted data), and adaptive strategies for 

participant selection and learning rates. These mechanisms 

collectively help maintain privacy in federated learning by 

preventing unauthorized access to sensitive information and 

ensuring that the collaborative model training process is 

secure[21][17]. 

4) Data Partitioning 

Data partitioning is the distribution or division of data 

among several devices or nodes in a decentralized network. 

Data partitioning is a crucial aspect of federated learning as 

it determines how the data is divided among these devices. 

The main types of data partitioning are horizontal, vertical, 

and transfer-federated learning. Horizontal federated 

learning focuses on distributing samples across devices, 

vertical federated learning partitions features and transfer 

learning involves leveraging pre-existing knowledge to 

enhance model performance in federated learning[28][29]. 

These strategies collectively contribute to the cooperation 

and privacy-preserving nature of FL, and they are considered 

the main categories of FL. 

C. Federated Learning Categories 

FL is categorized according to the way that data is 

partitioned in sample spaces, which are client devices that 

send data to the central server, and feature spaces, which are 

the key characteristics used to categorize the available data 

set in the system to main three categories: horizontal data 

partitioning, vertical data partitioning, and hybrid data 

partitioning, also known as federated transfer learning. 

Figure 6 illustrates the three types of FL which are  horizontal 

FL, vertical FL, and federated transfer learning[30][31]. 

 

 
Figure 6: Categories of FL[30] 

1) Horizontal Federated Learning: 

In horizontal federated learning(HFL), each device has 

different samples of the same features (columns), and the 

main  aim is to learn a global model overt all machines, where 

the participant's devices share the same features but with the 

little intersection of sample space, for example, the dataset 

for medical conditions from hospitals and clinics[16][32]. 

The training technique here includes a set of steps, as 

presented in Figure 7: 

Figure 7: HFL Workflow 

i. Participants compute training gradients locally, mask 

them via encryption process, differential privacy, or secret 

sharing, and then transmit the masked results to the server. 

ii. The aggregator machine ensures the security level of 

aggregation while keeping participant information private. 

iii. The aggregator distributes the aggregated model to 

participants. 

iv. Participants update their trained model with decrypted 

gradients. 

2) Vertical Federated Learning: 

In vertical federated learning(VFL),  dataset samples 

across different devices or servers have complementary 

feature sets. Each device possesses unique features, and 

collectively, they form a complete feature space[12][32]. The 

training technique here includes a set of steps, as presented  

in Figure 8: 

Figure 8:VFL Workflow 

 

i. The authorized aggregator generates encryption pairs and 

sends public keys to entities x and y. 

ii. X and Y encrypt and exchange intermediate values to 

calculate gradients and losses. 

iii. X and Y generate an additional mask and encrypted 

gradients, respectively. Y also computes encrypted loss. X and 

Y transmit encrypted values to the aggregator. 

iv. The aggregator sends decrypted gradients and the value 
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of loss to X and Y. The gradients are then unmasked by X and 

Y, which updates the model. 

3) Federated Transfer Learning: 

Federated Transfer Learning (FTL) merges the advantages of 

transfer learning and FL, catering to scenarios with 

decentralized data. Initially, a model is pre-trained on a central 

server using a rich dataset (source domain)[27]. This pre-

trained model is then distributed to local devices or servers, 

each with its distinct dataset (target domain). The local models 

fine-tune themselves to their respective data, adapting to 

specific characteristics while preserving privacy. The 

aggregated knowledge from these localized models enhances 

the global model's performance without the need to share raw 

data centrally[33]. 

 FTL proves invaluable in applications where data is 

distributed across various locations, striking a balance between 

leveraging prior knowledge and respecting data privacy. 

These three categories represent different approaches to 

federated learning, addressing various scenarios where 

collaboration among decentralized entities is crucial. HFL 

works well in cases when entities have data with the same 

features but different samples, VFL suits scenarios where 

entities have complementary feature sets, and federated transfer 

learning enables knowledge transfer across domains for 

improved model performance. Each category addresses specific 

privacy and collaboration considerations, providing flexibility 

for diverse applications[20][32]. 

Table 2 summarizes the main comparison factors between 

these three categories. 

 

 

TABLE 2 

FL CATEGORIES 

 

 HFL VFL FTL 

Data Distribution Each node has different 

samples with the same 

features. 

Each node has different 

features, but the same 

samples. 

Nodes have both different 

features and samples. 

Sharing Data Only model updates are 

shared, not raw data. 

Shares only the 

necessary information 

for model training, 

maintaining privacy. 

Shares model updates and 

may transfer learned features 

or representations. 

Model aggregation 

updates 

Aggregation typically 

involves averaging updates 

from different parties. 

Aggregation can involve 

more complex 

operations depending on 

the shared samples and 

features. 

Aggregation can involve 

various methods, including 

feature transfer or 

knowledge distillation. 

Privacy Well-suited for privacy 

preservation since raw data is 

not shared. 

Privacy is maintained by 

sharing only necessary 

information, but still 

depends on the protocol. 

Privacy-preserving, but the 

extent depends on the 

transfer learning approach. 

Communication 

overhead 

High Low depends on the type of 

transfer learning being used. 

Complexity Law High depends on the type of 

transfer learning being used 

and the domains involved. 

Application Healthcare User- behavior analysis Speech Recognition for 

Multilingual Applications 
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IV. LITERATURE REVIEW 

Federated learning is gaining increasing attention, and it 

stands as a promising avenue for research with the potential to 

reshape various technologies and domains. Its ability to 

facilitate the training of machine learning models across 

decentralized devices, such as smartphones, edge machines, 

and Internet of Things (IoT) devices, without the necessity of 

centrally sharing raw data, has fueled its appeal. This distinctive 

approach not only addresses privacy concerns but also unlocks 

previously untapped big data sets [34]. Beyond privacy 

considerations, federated learning intersects with diverse 

technologies and fields, spanning healthcare, finance, and 

autonomous systems. In the healthcare sector, it facilitates 

collaborative model training on patient data from different 

hospitals, leading to enhanced diagnostic accuracy and 

personalized treatment recommendations. In the realm of 

autonomous systems[35][36], it plays a crucial role by enabling 

distributed learning among connected vehicles and edge 

devices, thereby improving overall safety and performance[37]. 

 It is expected that there will be ongoing exploration of the 

combined use of FL with other technologies and fields, 

resulting in groundbreaking developments. This section 

presents a review of the current studies in the field of FL. 

The selection between HFL and VFL in various fields 

depends on different factors such as the type of data 

distribution, specific use cases, and the scope of model 

application. Currently, the focus is on the HFL approach, where 

a substantial dataset is divided among multiple parties sharing 

a common feature space. Healthcare is the most popular field 

that accommodates both types of federated learning, depending 

on the case study. For example, if hospitals and healthcare 

providers work together to provide new models, horizontal 

federated learning can be most suitable for creating predictive 

models and persevering the localization of patient information 

[5]. 

Other applications of horizontal federated learning include 

Mobile keyboard prediction, and utilizing horizontal federated 

learning to enhance predictive text and autocorrect suggestions. 

Each user's typing data remains on their device and the 

aggregated model benefits from a diverse range of user 

behaviors [38]. Recommendation systems, employing 

horizontal federated learning for training recommendation 

models [39]. User interaction data contributes to improving 

recommendations without centralizing sensitive user 

preferences. 

In other directions, VFL is applied to the applications in 

banks and financial institutions collaborating on financial fraud 

detection. Vertical federated learning allows organizations that 

have different data sets, such as transaction history and 

customer profiles, to collaborate to  build a more accurate fraud 

detection model [40]. 

Vertical federated learning is used to optimize inventory 

management and demand forecasting in the field of supply 

chain where companies in various parts of a supply chain 

collaborate. Each company shares relevant data without sharing 

details [41]. 

The field of data analytics in the Internet of Things (IoT), 

where IoT devices generate data with different specs and 

characteristics. Vertical federated learning enables various 

device owners to cooperate on training the model without 

exchanging sensor data, thereby enhancing collective insights 

[42]. 

Li et al. [43] provided a detailed overview of FL, highlighting 

challenges and future directions. Major challenges include 

communication efficiency because of frequent interactions 

between the central server and other machines, especially in 

cases of large-scale or limited bandwidth. Privacy and security 

issues are increasing  because of  sharing models, posing risks 

such as adversarial attacks and data leakage. The presence of 

non-IID data across devices adds complexity to the training 

process. Addressing these challenges is crucial for the 

advancement of federated learning strategies. 

Hard et al. [38] introduced a Coupled Input-Forget Gates 

(CIFG) model that trained using FL by demonstrating its 

advantage over the normal way of training based on a server-

trained CIFG model and a baseline n-gram model in keyboard 

prediction for next-word. The study also explored federated 

learning's application in mobile keyboard prediction, 

addressing challenges related to device heterogeneity, such as 

varying computational power, battery life, and network 

connectivity. The authors highlighted the difficulties stemming 

from resource limitations, communication constraints, and 

uneven participation in federated learning, where not all devices 

contribute equally or consistently. Additionally, the paper 

discussed the complexities of model aggregation, emphasizing 

that inefficient or inaccurate methods can result in network 

overhead and synchronization issues, leading to suboptimal 

global models and slower convergence. 

Mothukuri et al. [44] conducted an extensive examination of 

the security factors and privacy dimensions of FL. The study 

identified the limitations of communication, poisoning, and 

backdoor attacks as the primary security threats, with a 

particular emphasis on inference-based attacks being the high 

risk of FL privacy. 

Y. Lu et al. [45] introduced a privacy-preserving federated 

learning mechanism, showcasing its application in training a 

machine learning model to identify cyber-attacks while 

maintaining data privacy. However, a notable limitation of this 

approach is its dependence on a central server to manage the FL 

process, posing a potential vulnerability if the central server 

becomes compromised. 

Ji et al. [46] provided how different learning algorithms 

integrate with the FL framework, addressing main concerns 

such as the efficiency of learning and statistical heterogeneity. 

Termed as federated X learning, it delves into the fusion of FL 

with other paradigms like multitask learning, meta-learning, 

transfer learning, unsupervised learning, and reinforcement 

learning. 
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Current studies on federated learning lack sufficient 

consideration of security aspects in data exchange, exposing 

concerns about potential data leakage and the compromise of 

model privacy. The participation of multiple clients in FL 

models introduces vulnerabilities to various attacks on clients, 

servers, and communication channels. 

 

 To address these challenges, model development should follow 

the main information security principles—confidentiality, 

integrity, and availability (CIA). 

In response to these concerns, some studies, such as 

Kurniawan et al. [47], have explored vulnerabilities in federated 

learning models. They identified issues like communication 

vulnerabilities, gradient leakage, client and server compromise 

and the vulnerabilities of aggregation algorithms. Additionally, 

the authors proposed a privacy-preservation scheme for active 

learning through encryption-based FL. While this scheme 

effectively addresses some vulnerabilities, it remains 

susceptible to issues like insecure communication channels, 

compromised clients, and compromised servers. 

Liu et al. [48] presented an exploration of the risks, attacks, 

and defense mechanisms associated with Federated Learning 

(FL) throughout its entire process, categorized into three phases 

including auditing for the data and behavior, training, and 

prediction. 

 

V. CONCLUSION 

Federated Learning is a significant technology in achieving 

a high level of data privacy in machine learning by training 

models across decentralized devices. This paper focuses on 

introducing all aspects of federated learning and its potential. 

Also, it presents challenges of FL such as communication 

overhead, heterogeneity among devices, security concerns, and 

strategic behavior that must be addressed. Future work focuses 

on optimizing communication, enhancing security measures, 

exploring decentralized architectures, and addressing issues of 

compromising the model architecture's privacy. Overcoming 

these challenges and advancing research in these areas is 

important to get fully realize the benefits of FL across diverse 

domains. The incorporation of a federated learning framework 

with suitable security technology, with a focus on mechanisms 

for selecting users and data, becomes essential, acting as a 

safeguard against potential security breaches. 
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