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Abstract—Multimodal complex human activity recognition 
involves the recognition and understanding of human activities 
using multiple modalities, such as visual, auditory, and sensor- 
based data. With the proliferation of smart devices and the 
increasing availability of multimodal data, there is a growing 
need for robust and efficient methods to recognize complex 
human activities in real-world settings. This paper presents 
an overview of multimodal complex human activity recognition 
techniques, highlighting the challenges and recent advancements 
in the field. This paper discusses the fusion of multimodal data 
sources, including visual and audio cues, as well as sensor data 
from wearable devices or environmental sensors. Furthermore, 
it explores the use of machine learning and deep learning 
algorithms for activity recognition and the used datasets in this 
field. Overall, this paper provides a comprehensive overview 
of techniques, challenges, and future directions in multimodal 
complex human activity recognition, aiming to stimulate further 
research in this exciting and rapidly evolving field. 

Index Terms—multimodal, har, complex, classification 

 

I. INTRODUCTION 

UMAN activity recognition (HAR) is a field of study 

that focuses on developing techniques and systems to 

automatically identify and understand human activities using 

data collected from various devices. It involves the analysis 

and interpretation of data to recognize and classify different 

activities performed by individuals. 

The goal of HAR is to enable machines or computer systems 

to comprehend and respond to human activities in real-time 

or offline scenarios. By employing a combination of different 

technologies, such as cameras, accelerometers, gyroscopes, 

magnetometers, GPS, and microphones, HAR systems capture 

and process information about body movements, and environ- 

mental conditions to infer the activities being performed. 

Sensor-based human activity recognition (HAR) and vision- 

based HAR are two distinct approaches to recognizing and 

understanding human activities [1]. While both methods aim 

to achieve the same goal, they differ in terms of the types of 

sensors used and the data they capture. 

Sensor-based HAR relies on a combination of various 

sensors such as accelerometers, gyroscopes, magnetometers, 

and microphones. These sensors capture data related to body 

movements, and environmental conditions. The data collected 

from these sensors is processed and analyzed using machine 

learning algorithms to identify and classify human activities. 

On the other hand, vision-based HAR focuses primarily on 

visual information captured by cameras or depth sensors [2]. 

This approach utilizes computer vision techniques to extract 

relevant features from the visual data and recognize human 

activities based on those features. Vision-based HAR often 

involves techniques such as object detection, pose estimation, 

motion tracking, and activity recognition algorithms applied 

to video or image sequences. 

One advantage of sensor-based HAR is its ability to capture 

a wide range of information beyond visual cues. The additional 

sensors can provide data about motion, orientation, and envi- 

ronmental context, which can be valuable for understanding 

activities in different settings. Sensor-based HAR can be 

particularly useful in scenarios where visual information alone 

may not be sufficient, such as in low-light conditions or when 

objects are occluded. 

On the other hand, vision-based HAR excels in scenarios 

where visual cues play a crucial role in activity recognition. It 

can capture detailed information about human poses, gestures, 

interactions with objects, and the spatial-temporal context 

of activities. Vision-based approaches can be effective in 

applications such as action recognition in sports, surveillance, 

human-computer interaction, and video analysis. 

Both sensor-based and vision-based HAR have their 

strengths and limitations, and the choice between them de- 

pends on the specific requirements of the application. In some 

cases, a combination of both approaches may be employed 

to leverage the strengths of each modality and achieve more 

accurate and robust activity recognition. 

It is worth noting that recent advancements in deep learning 

and the availability of large-scale datasets have enabled the 

development of hybrid approaches that combine sensor data 

and vision data for activity recognition which are called 

multimodal HAR [3]. These hybrid methods aim to exploit 

the complementary nature of sensor and vision information 

to improve recognition accuracy and address challenges in 

complex activity scenarios. 

Multimodal human activity recognition refers to the process 

of identifying and understanding human activities by combin- 

ing and analyzing information from multiple modalities [4], 

such as visual (e.g., images or videos), audio (e.g., speech 

or ambient sounds), and sensor data (e.g., accelerometer or 

gyroscope readings). It aims to capture a more comprehensive 

and accurate representation of human activities by leveraging 

the complementary nature of different modalities. 

By combining information from multiple sensors or sources, 

it becomes possible to obtain a more holistic understanding 
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of human activities, which can lead to improved activity 

recognition accuracy and robustness. 

The process of multimodal human activity recognition typ- 

ically involves several steps. First, data is collected using 

different sensors or modalities. For example, in a healthcare 

setting, a combination of wearable sensors, video cameras, 

and microphones may be used to capture relevant infor- 

mation about a person’s activities. Next, the collected data 

is preprocessed to remove noise, normalize the data, and 

extract relevant features that capture discriminative patterns 

or characteristics of the activities. 

After preprocessing, the multimodal data is usually fused or 

combined to create a unified representation that captures the 

complementary information from different modalities. There 

are various fusion techniques, including early fusion, late 

fusion, and hybrid fusion, which determine when and how 

the information from different modalities is combined. 

Once the fusion is performed, machine learning algorithms 

are applied to train models that can recognize and classify 

human activities. These models can be based on traditional 

machine learning approaches, such as support vector machines 

(SVMs) or decision trees, or more advanced techniques like 

deep learning, which have shown promising results in multi- 

modal activity recognition tasks. 

Evaluation of multimodal human activity recognition sys- 

tems is typically done using labeled datasets, where the ground 

truth activity labels are provided. Performance metrics such as 

accuracy, precision, recall, and F1 score are used to assess the 

effectiveness of the recognition system. 

Overall, multimodal human activity recognition is an in- 

terdisciplinary field that combines techniques from signal 

processing, computer vision, machine learning, and sensor 

technology. By leveraging multiple modalities, it offers the 

potential for more accurate, robust, and context-aware recogni- 

tion of human activities, enabling a wide range of applications 

in various domains. 

This paper explores the field of multimodal complex Hu- 

man Activity Recognition (HAR) by discussing their method- 

ologies, strengths, and limitations. Furthermore, this paper 

discusses the different data modalities to improve activity 

recognition accuracy and address challenges in complex ac- 

tivity scenarios. The study also delves into the process of 

multimodal human activity recognition, outlining steps such 

as data collection from various devices, data preprocessing, 

feature extraction, and data fusion techniques. This study 

presents the multimodal and complex HAR datasets and the 

different algorithms used to detect these activities. 

II. ACTIVITIES TYPES: SIMPLE AND COMPLEX 

A. Simple Activities 

Simple human activities refer to basic actions or behav- 

iors that are relatively easy to perform and recognize [5]. 

These activities are typically characterized by straightforward 

movements, minimal complexity, and can be easily understood 

by observing their visual or sensorial cues. Simple activities 

are usually repeatable and short in duration such as walking, 

running and standing. Samples of simple activities are shown 

in Fig.1 

 

 

 

Fig. 1.  Examples of simple activities [6] 

 

 

B. Complex Activities 

Complex activities are not as repetitive as simple activities 

and may involve various hand gestures [7]; for example, 

eating, drinking coffee, smoking and giving a talk as shown 

in Fig.2. Complex activities are longer in duration when 

compared to the simple ones. 

Complex HAR often requires the integration of multiple 

modalities, such as visual, audio, and sensor data, as well as 

the use of advanced machine learning techniques like deep 

learning and sequence modeling. The goal is to accurately 

recognize and understand the intricacies of human activities, 

enabling applications in areas such as sports [8], surveillance 

[9], healthcare [10], robotics, and human-computer interaction 

[8]. 

 

 
Fig. 2.  Examples of complex activities [6] 

 
 

 

III. MULTIMODAL HAR TYPES 

Multimodal HAR involves the fusion of different modalities 

for activity data capturing. Multimodal HAR make use of the 

data captured from different devices such as sensors and vision 

devices. 
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These different modalities combinations are discussed in the 

following section. Fig.3 shows samples of data captured with 

different modalities. 
 

 

Fig. 3.  Samples of data captured with different modalities [11] 

 

 

A. Fusion of Depth and Inertial Sensors 

Several studies have explored the concurrent utilization of 

depth and inertial sensors in Human Activity Recognition 

(HAR). Hondori et al. [12] introduced a novel approach by 

integrating Kinect and inertial sensors for gesture recognition 

tasks. Kinect technology facilitated the capture of positional 

and angular displacements, while inertial sensors contributed 

by analyzing acceleration values. Similarly, Kwolek et al. [13] 

devised a fuzzy interface methodology to detect falls employ- 

ing both Kinect and inertial sensors. Notably, their focus was 

primarily on fall detection, lacking specificity in distinguishing 

between different activities. In another endeavor, Delachaux 

et al. [14] integrated Kinect with a set of five three-axis 

accelerometers. While accelerometers provided acceleration 

data, Kinect was utilized for positional information. The 

combined dataset was then subjected to classification using 

binary neural networks, demonstrating the potential of fusion 

strategies in HAR research. 

 

B. Fusion of Normal RGB Camera and Inertial Sensors 

The fusion of video cameras and inertial sensors has been 

shown to significantly enhance recognition performance com- 

pared to utilizing either modality alone [15]. In practice, inter- 

nal sensors are commonly employed to capture orientation and 

acceleration data pertaining to various body segments, while 

videos are harnessed to glean positional insights [16]. Marcard 

et al. [17] pioneered the integration of multi-view video 

cameras with Inertial Measurement Units (IMUs) for motion 

capture applications. Within their framework, videos were 

instrumental in achieving precise, drift-free body positioning, 

whereas IMUs facilitated accurate tracking of 3D limb orien- 

tation. Similarly, Trumble et al. [18] devised a sophisticated 

system incorporating four video cameras alongside inertial 

sensors to enhance Human Activity Recognition (HAR) via 

visual hull estimation techniques. Leveraging Long Short- 

Term Memory (LSTM) networks, they effectively mitigated 

noise while leveraging temporal information, underscoring the 

advantages of multimodal fusion in HAR contexts. 

C. Fusion of Multiple Wearable Sensors 

Several studies have explored combining different wearable 

sensors for recognizing human activities. Mixing multiple 

sensors tends to improve recognition accuracy by capturing 

a wider range of features. Wilson et al. [19] utilized various 

binary sensors like contact switches, motion detectors, break- 

beam sensors, and pressure-sensitive mats to create a more 

accurate activity recognition system. Their system performed 

better than single-sensor setups, especially with a higher 

sampling rate [20]. Similarly, Chetty et al. [21] introduced 

a data analysis approach for activity recognition using both 

wireless body sensors and inertial sensors from smartphones. 

They applied algorithms that ranked features based on their 

importance, along with ensemble learning and classifiers like 

random forests and lazy learning. Additionally, they incorpo- 

rated data from smartphone gyroscopes and accelerometers, 

demonstrating its usefulness in E-Health applications for in- 

dividuals with special needs. 

In the following sections, the steps of multimodal complex 

HAR system is described. It follows several stages starting 

from data gathering, pre-processing, feature extraction and 

classification as shown in the HAR system overview in Fig.6 

 

IV. DATA COLLECTION 

Multimodal human activity recognition (HAR) systems 

combine information from multiple sensors or modalities to 

achieve a more comprehensive understanding of human activ- 

ities. Here are some devices commonly used in multimodal 

HAR: 

Wearable Sensors [22]: Devices such as smartwatches, 

fitness trackers, or smart clothing embedded with sensors 

like accelerometers, gyroscopes, and heart rate monitors can 

capture motion, orientation, and physiological data. These 

sensors provide valuable inputs for activity recognition when 

combined with other modalities. 

Smartphones and Tablets [23]: Smartphones and tablets 

have multiple built-in sensors, including accelerometers, gyro- 

scopes, magnetometers, GPS, microphones, and cameras. They 

can capture visual, audio, location, and motion data, making 

them versatile devices for multimodal HAR. Additionally, their 

computing power allows for real-time data fusion and analysis. 

Depth Sensors [24]: Depth sensors like the Microsoft Kinect 

or Intel RealSense cameras can capture both color and depth 

information. They provide 3D data that can enhance the 

recognition of human body movements and interactions with 

the environment. 

Microphones [25]: Audio sensors, such as microphones, 

can capture ambient sound or specific sounds related to 

activities. Audio data can be processed for speech recognition, 

environmental sound analysis, or identifying activity-specific 

sounds. 

Cameras [26]: Visual sensors, such as traditional cameras or 

RGB-D cameras, capture video or image data. They provide 

visual cues and information about human activities, body 

postures, and interactions with objects and the environment. 

RFID (Radio-Frequency Identification) [27]: RFID technol- 

ogy uses tags and readers to identify and track objects or 
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Fig. 4.  Types of HAR 

 

 

 
 

 

Fig. 5.  Different Devices Used for Data Capturing 

 
 

 

individuals. In multimodal HAR, RFID tags can be attached to 

objects or worn by individuals to provide additional contextual 

information about activities and object interactions. 

Inertial Measurement Units (IMUs) [28]: IMUs consist 

of accelerometers, gyroscopes, and magnetometers integrated 

into a single device. They are often used in wearable devices 

or attached to equipment to capture motion and orientation 

data. 

Environmental Sensors [29]: Sensors like temperature sen- 

sors, humidity sensors, or gas sensors can provide contextual 

information about the environment and assist in recognizing 

activities related to climate control, air quality monitoring, or 

safety. 

The different placements of these different devices are 

shown in Fig.5. 

V. PREPROCESSING AND WINDOWING 

Preprocessing and windowing are important steps in pro- 

cessing for human activity recognition (HAR). These steps 

help to enhance the quality of the data and prepare it for 

subsequent analysis and recognition algorithms. Here’s an 

overview of sensor signals and image processing in HAR: 

 

A. Signal processing 

Noise Removal: Sensor signals may contain noise or in- 

terference that can negatively affect the accuracy of activity 

recognition. Preprocessing techniques such as filtering (e.g., 

low-pass, high-pass, or band-pass filtering) can be applied to 

remove noise and enhance the signal quality. Signal Condition- 

ing: Sensor signals may need to be adjusted or calibrated to 

account for any biases or offsets. This can involve techniques 

such as zero-mean normalization or feature scaling to ensure 

that the signals are in a consistent range or format. Sensor 

Fusion: In some cases, multiple sensors (e.g., accelerometers, 

gyroscopes, magnetometers) may be used to capture different 

aspects of human activity. Sensor fusion techniques, such as 

data alignment, synchronization, or feature combination, can 

be employed to integrate the signals from multiple sensors into 

a unified representation. 

 

B. Image processing 

Some machine learning algorithms, like CNNs, face a 

limitation requiring images in the dataset to be resized to a 

single dimension. Therefore, images undergoing training or 

testing on the dataset must be preprocessed and adjusted to 

match uniform widths and heights prior to input into the 

learning algorithm. 

A typical pre-processing method consists of generating 

modified versions of the current images and adding them to 

the dataset. This may involve scaling, rotating, flipping, and 

other alterations. The goal is to expand the dataset and expose 

the neural network to diverse image variations. This increases 
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Fig. 6.  System Overview of Multimodal Complex HAR 

 

the likelihood of a machine learning model identifying objects 

in any form. 

Image illumination significantly impacts an image’s visual 

characteristics and plays a crucial role in automatic data 

extraction from images. Consequently, illumination correction 

is often the initial step in image analysis tasks [30]. This 

field has seen significant advancements in recent years, with 

numerous illumination correction techniques available, such 

as histogram equalization, homomorphic filtering, and gamma 

correction. These methods can improve image contrast and 

lighting to a certain extent [31]. 

Sometimes, removing extra data from images can be ben- 

eficial, either to save memory or simplify computation. A 

common example is changing a color image to grayscale. 

This is because color is often unnecessary for recognizing 

and understanding images, as grayscale images can still be 

sufficient for identifying certain objects. Since color images 

have more information than black-and-white ones, they can 

introduce unnecessary complexity and take up more storage 

space. 

Extracting main subjects from a series of images or videos, 

often referred to as segmentation, involves two main steps: 

creating a background model and identifying the foreground. 

The former approach, which involves constructing background 

information first and then detecting objects by comparing the 

most recent frame to the extracted background, is particu- 

larly effective for tracking quickly moving objects captured 

by stationary cameras, consumes little computing resources, 

and is easy to set up [32]. Conversely, the latter approach, 

which involves extracting the foreground, is used when human 

activities are recorded by a pan-tilt-zoom camera or a camera 

mounted on moving objects, such as cars or robots. 

Grey-scaled images can be transformed into binary images 

using thresholding, which helps in isolating areas of interest. 

A basic thresholding method assigns a black pixel to image 

pixels with intensity lower than a fixed value, called the 

threshold, and a white pixel otherwise. Thresholding can be 

categorized into two types: global thresholding, which uses the 

same threshold for all image pixels, and local thresholding, 
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which applies different thresholds to various image regions. 

 

C. Windowing 

The collected data are typically continuous time-series data. 

Windowing involves segmenting the data into smaller, over- 

lapping or non-overlapping windows of fixed duration [33]. 

This allows for the extraction of features that capture temporal 

patterns and dynamics within specific time intervals. The 

choice of window size and overlap is crucial and depends on 

the characteristics of the activities being recognized. Smaller 

window sizes capture fine-grained details but may result in in- 

creased computational complexity, while larger window sizes 

provide a broader context but may lose temporal information 

[34]. Overlapping windows can help capture temporal depen- 

dencies between adjacent windows. Window function (e.g., 

Hamming, Hanning, or Gaussian) can be applied to attenuate 

edge effects and smooth the signal within each window. 

By applying preprocessing techniques, the collected data can 

be cleaned, normalized, and synchronized, reducing noise 

and inconsistencies. Windowing facilitates the partitioning of 

the collected data into manageable segments, enabling the 

extraction of features that capture relevant temporal patterns 

and dynamics. These preprocessed and windowed data can 

then be used as input for subsequent feature extraction and 

machine learning algorithms for human activity recognition. 

 

D. Multimodal Fusion Methods 

Fusing the information acquired by different modality sen- 

sors is a great challenge due to the dimensionality of data. For 

a multimodal HAR system, the data acquired can be fused at 

different stages. The different fusion approaches are shown in 

Fig.7 

1) Early fusion: In the paradigm of early fusion, the amal- 

gamation of features from various modality sensors occurs 

through dimensionality reduction, culminating in the formation 

of novel feature vectors. Evangelopoulos et al. pioneered 

this technique by merging textual and visual signals, meticu- 

lously analyzing each modality independently while leveraging 

saliency scores for both linear and non-linear fusion [35]. 

Similarly, Neverova et al. compressed all channels into a single 

dimension within the initial convolution layer, effectively 

minimizing the number of final parameters to be learned and 

consequently reducing computational overhead [36]. 

2) Late fusion: At the Decision Level, the late fusion 

strategy diverges from early fusion by segregating the data 

from each modality sensor, independently learning their pa- 

rameters, and subsequently amalgamating their probabilistic 

models. This method, as espoused by [37], harnesses the 

individual strengths of each modality, potentially enhancing 

recognition outcomes. However, it entails a greater time in- 

vestment and necessitates a sophisticated learning framework, 

raising concerns regarding potential loss of inter-modality 

correlation. A comprehensive evaluation of CNN-based sensor 

fusion methodologies for multimodal HAR conducted by [38] 

revealed that late and hybrid fusion techniques consistently 

outperform early fusion methods, as corroborated by experi- 

ments on RBK [38] and PAMAP2 [37] datasets. 

3) Slow fusion (Hybrid): The slow fusion paradigm, ini- 

tially introduced by Karpathy et al. [39], represents a novel 

approach to multimodal data fusion. This hierarchical tech- 

nique synergizes elements from both early and late fusion 

methodologies, sequentially propagating information through 

successive fusion stages. While offering the advantages of both 

approaches, slow fusion imposes a substantial computational 

burden due to its multi-level information processing, neces- 

sitating careful consideration of computational resources and 

efficiency. 

 

VI. FEATURE EXTRACTION 

Obtaining key features from pre-processed data is achieved 

through feature extraction, followed by feature selection, 

which picks a subset of features. This method is beneficial 

when dealing with large datasets, as it reduces resource usage 

without losing crucial or relevant information. Feature extrac- 

tion helps minimize redundant data in the dataset, transforming 

it into the most significant features unique to the activity. 

Utilizing these features, instead of raw data, decreases the 

impact of noise and lessens the computational burden of 

classification algorithms. The typical features are presented in 

Table I. This section explores traditional and deep learning- 

based feature extraction methods for HAR. 

 

A. Traditional Feature Extraction 

Traditional feature extraction approaches depend on exper- 

tise in a particular field and signal processing methods to pull 

out telling features from raw data. In the context of human 

activity recognition (HAR), statistical features, time-domain 

features, frequency-domain features, and time-frequency fea- 

tures are frequently used. These manually crafted features are 

commonly input into machine learning algorithms for activity 

classification. 

 

B. Deep Learning Feature Extraction 

Deep learning techniques, especially convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs), 

have achieved impressive results in automatically extracting 

discriminative features from raw data. Deep learning-driven 

feature extraction methods include: 

• Convolutional Neural Networks (CNNs): CNNs can 

automatically learn hierarchical representations of data by 

employing convolutional and pooling layers. They have 

been applied to raw data, such as time-series accelerom- 

eter data, to extract discriminative features for activity 

recognition. 

• Recurrent Neural Networks (RNNs): RNNs, including 

variants like long short-term memory (LSTM) networks 

and gated recurrent units (GRUs), are capable of cap- 

turing sequential dependencies in the data. They are 

well-suited for modeling temporal dynamics in activity 

sequences. 

• Hybrid Models: Hybrid architectures that combine 

CNNs for spatial feature extraction and RNNs for tempo- 

ral modeling have been proposed for HAR tasks. These 
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Fig. 7.  Different fusion approaches for data from different modalities (a) early fusion, (b) late fusion, and (c) slow fusion 

 

Category Feature Abbreviation Equation References 

Mean M M =  1 
ΣN  xi [40], [41] 

N i=1 

Variance V V =  1 
ΣN  (xi − x¯)2 [40], [41] 

 
Time Mean absolute deviation MAD MAD =  1 

ΣN  |xi − x¯| [42], [43] 

Root mean square RMS RMS = 
, 

1 ΣN  x2 
 

[42], [43] 

Zero Crossing Rate ZCR ZCR =   1   
ΣN−1 |sign(xi) − sign(xi+1)| [40], [42] 

 

Interquartile Range IQR IQR = Q3 − Q1 [42], [43] 

75 ’th percentile PE PE = Q3 [41], [42] 

 
 1   N 

Kurtosis KS KS = 
(  1  ΣN 

(xi−x¯)4 

[43], [44] 
(xi−x¯)2)2 

Signal magnitude area SMA SMA =  1 
ΣN  |xi| [40], [43] 

Min-max MM MM = max(x) − min(x) [45], [46] 

Spectral energy SE SE = 
ΣN  |Xi|2 [40], [41] 

Frequency 
Spectral entropy E E = − 

ΣN
 

ΣN 

 
Pi log2(Pi) [41], [43] 

fi|Xi|
2

 

Spectral centroid SC SC = i=1 
N 
i=1 

|X |2 [40], [47] 

Principal frequency PF PF = fi with the maximum |Xi| [41], [48] 

ΣN  (xi−x¯)(yi−y¯) 

Other i=1  i i=1  i 

Autoregressive coefficients AR1, AR2 AR1, AR2 = coefficients from autoregressive model  [46], [49] 

Tilt Angle  TA  TA = arctan

  √
x2+y2

 

[47], [49] 
 

TABLE I 
COMMON FEATURES IN HAR 

 

 

models leverage both spatial and temporal information 

present in captured data. 

Deep learning-based feature extraction methods have 

demonstrated state-of-the-art performance in HAR tasks, par- 

ticularly when large amounts of labeled data are available for 

training. 

In complex multimodal human activity recognition, features 

are extracted from various input data sources such as wearable 

sensors, video streams, and audio recordings. Key features 

extracted from different modalities include: 
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1) Wearable Sensor Data: Features extracted from wear- 

able sensor data include mean, variance, mean absolute devi- 

ation, root mean square, zero crossing rate, and interquartile 

range. These features provide insights into motion and orien- 

tation information captured by accelerometers and gyroscopes. 

2) Video Data: Features extracted from video data capture 

spatiotemporal information, including motion and spatial dis- 

tribution of objects. Common features include spatiotemporal 

features, histogram of oriented gradients (HOG), and optical 

flow. 

3) Audio Data: Features extracted from audio data include 

mel-frequency cepstral coefficients (MFCCs), zero crossing 

rate, and spectral centroid. These features represent the short- 

term power spectrum and spectral characteristics of audio 

signals associated with human activities. 

In multimodal human activity recognition, features from 

different modalities are often combined to improve activity 

recognition accuracy. 

 

VII. DATASETS 

In recent years, the field of human activity recognition 

(HAR) has witnessed significant advancements, driven by 

the integration of multimodal data and the development of 

sophisticated machine learning algorithms. The availability of 

large-scale datasets plays a crucial role in fostering research 

progress and enabling the development and evaluation of 

robust HAR systems. 

This section focuses on multimodal complex HAR datasets, 

which encompass multiple sensor modalities and capture a 

wide range of human activities in diverse real-world scenarios. 

These datasets are designed to address the challenges of 

recognizing complex activities that involve intricate temporal 

and spatial dynamics, as well as variations in the different 

modalities data. Table III summarizes the available multimodal 

and complex activities datasets. Table II shows the state of the 

art results of these datasets. 

 

A. PAMAP2 

The Activity Monitoring dataset includes 18 distinct physi- 

cal activities performed by 9 individuals, consisting of 8 men 

and 1 woman. It was recorded using 3 inertial measurement 

units and a heart rate monitor. The dataset features a mix of 

simple and complex activities, making it commonly used in 

multimodal complex human activity recognition. 

 

B. Opportunity 

The dataset consists of data from motion sensors during 

common daily activities, gathered through body-mounted sen- 

sors such as 7 inertial measurement units, 12 3D accelerom- 

eters, and 4 3D localization sensors. It also includes data 

from object sensors (12 objects with 3D acceleration and 2D 

rate of turn) and ambient sensors (13 switches and 8 3D 

accelerometers). Four individuals each carried out 6 sessions, 

which included 5 sessions of regular activities and 1 supervised 

”drill” session. 

C. Opportunity++ 

The Opportunity++ dataset enhances the existing OPPOR- 

TUNITY dataset by adding previously unpublished videos and 

video-based skeleton tracking. This improvement is significant 

as it fills a gap by incorporating video footage and skeleton 

tracking, thereby promoting more comprehensive research in 

multimodal sensor fusion. 

 

 

D. CSL-SHARE 

The CSL-SHARE dataset is an in-house sensor-based col- 

lection that includes 22 different daily activities and sports, 

involving 20 individuals for a total of 691 minutes, with 

363 minutes being segmented and labeled. The dataset in- 

cludes two triaxial accelerometers, two triaxial gyroscopes, 

four surface electromyography (sEMG) sensors, one biaxial 

electrogoniometer, and an airborne microphone integrated into 

a knee bandage. Data was recorded at varying sampling 

rates and resolutions, with synchronization maintained across 

multiple recording systems. 

 

 

E. KU-HAR 

The dataset consists of data on 18 distinct activities per- 

formed by 90 individuals, with 75 of them being male and 15 

being female. The data was gathered using smartphone sen- 

sors, specifically Accelerometer and Gyroscope, and includes 

1945 raw activity samples from the participants. The activities 

vary from basic stationary tasks like standing and sitting to 

more active ones such as walking, running, and playing table 

tennis. 

 

 

F. SPHERE 

Combines different sensor modality which are (accelerome- 

ter, video, environmental sensors). The provided data includes 

accelerometer readings sampled at 20 Hz in raw format, RGB- 

D video features related to the center of mass and bounding 

box of identified persons (instead of raw video to maintain 

participant anonymity), and raw data from Passive Infra- 

Red (PIR) sensors for environmental context. The dataset is 

annotated with twenty activity labels related to posture and 

ambulation. 

 

 

G. OPERAnet 

It includes RF data such as Channel State Information 

(CSI) from a WiFi Network Interface Card (NIC), Passive 

WiFi Radar (PWR) from a Software Defined Radio (SDR) 

platform, and Ultra-Wideband (UWB) signals. Vision and 

infrared-based data from Kinect sensors are also incorporated. 

With approximately 8 hours of annotated measurements from 

six participants engaging in six daily activities across two 

rooms. 
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TABLE II 

SUMMARY OF RECENT RESULTS OF MULTIMODAL COMPLEX HAR DATASETS 

 

Dataset Method Results 
 

Bhattacharya et al. [50] Ensemble HAR Accuracy: 97.45% 

PAMAP2 

 
 

 

Opportunity 

Sarkar et al. [51] Spatial Attention-CNN Accuracy: 98.29% 
Verma et al. [52] Multi-branch CNN GRU Accuracy: 98.65% 
Kumar et al. [53] Deep-HAR Accuracy: 99.64% 

Chai et al. [54] InnoHAR F1 Score: 94.6% 
Zeng et al. [55] RMFSN Accuracy: 93.89% 
Han et al. [56] ResNet+HC Accuracy: 91.55% 
Mim et al. [57] GRU-INC Accuracy: 90.37% 
Park et al. [58] GTSNet Accuracy: 87.47% 

 
 

Sakorn et al. [59] Deep Residual NN Accuracy: 91.60%, F1 Score: 92.13% 
Hartmann et al. [60] HLF Accuracy: 89.7% 

 

 

 

 

 

 

 

 
 

UTD-MHAD 
Islam et al. [69] HAMLET Accuracy: 95.12% 
Yang et al. [70] LFMF Accuracy: 98.20% 
Liu et al. [66] SAKDN Accuracy:98.60% 

 
 

C-MHAD Wei et al. [71] 3D CNN and 2D CNN Smart TV Actions F1 Score: 81.8%, 
Transition Actions F1 Score: 82.3% 

WEAR Bock et al. DeepConvLSTM [72] F1 Score: 75.78% 

Lu et al. [69] RecCapsNet with LSTM Accuracy: 86.6% 
Yantao et al. [73] LSTM Recall and precision rates of 85.8% and 86.2%, 

respectively. 

Islam et al. [69] HAMLET F1 Score: 81.52% 
Long et al. [74] KEYLESS F1 Score: 74.40% 

 

UT-Kinect 
Islam et al. [69] HAMLET 
Mobaraki et al. [75] LSTM 

Accuracy: 97.45% 
Accuracy: 84.14% 

MEX Martin et al. [76] MLP and CNN MLP Accuracy: 94.19%, CNN Accuracy: 95.49% 

 

UP-Fall 
Mart´ınez et al. [77] MLP and RF 
Murat et al. [78] ShuffleNet 
Li et al. [79] Kamtfenet 

MLP Accuracy: 94.32%, RF Accuracy: 95.19% 
Accuracy: 99.7% 
Accuracy: 99.62% 

 

Berkeley-MHAD 
Timothy et al. [80] SVM 
Ba et al. [81] Logits 
Liu et al. [66] SAKDN 

Accuracy: 97.6% 
Accuracy: 97.93% 
Accuracy: 99.33% 

MHEALTH Kutlay et al. [82] Various ML Algorithms Accuracies: 90.55%-78.09% 

REALDISP 
Runze et al. [83] SMLDist Accuracy: 94% 
Aljarrah et al. [84] K-NN, Decision tree, Naive Accuracies: 98.09%, 94.61%, 83.61%, 93.12%, 
Bayes, SVM, CNN 99.85% 

 

 

UCI HAR 
 

 

 

 

WISDM 

Zeng et al. [55] RMFSN Accuracy: 98.13% 
Venkatachalam et al. [85] Bi-HAR Accuracy: 97.89% 
Han et al. [56] ResNet+HC Accuracy: 97.01% 
Mim et al. [57] GRU-INC Accuracy: 96.27% 
Wang et al. [86] DMEFAM Accuracy: 96.00% 

Zeng et al. [55] RMFSN Accuracy: 98.35% 
Mim et al. [57] GRU-INC Accuracy: 99.13% 
Wang et al. [86] DMEFAM Accuracy: 97.90% 
Sun et al. [87] CapsGaNet Accuracy: 96.80% 
Park et al. [58] GTSNet Accuracy: 88.87% 

 
 

CSL-SHARE 

CMU-MMAC 

UCSD-MIT 

KU-HAR 
Akter et al. [61] CNN with Attention 

Teng et al. [62] Large Receptive Field Attention 

Accuracy: 96.86% 

Accuracy: 91.15% 

SPHERE Ali et al. [63] Deep Learning CNN-LSTM Accuracy: 93.67%, CNN Accuracy: 
93.55%, LSTM Accuracy: 92.98% 

OPERAnet Koupai et al. [64] Fusion Transformer F1 Score: 95.9% 

 
MMAct 

Islam et al. [65] Multi-GAT 
Liu et al. [66] SAKDN 
Duhme et al. [67] Fusion-GCN 

F1 Score: 91.48% 
F1 Score: 77.23% 
F1 Score: 89.60% 

 Mengyuan et al. [68] CNN with Pose Estimation Accuracy: 94.51% 
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H. EV-Action 

The EV-Action dataset is a collection of data designed for 

multi-modal human action analysis, featuring RGB, depth, 

electromyography (EMG), and two skeleton modalities. It 

surpasses previous datasets by providing high-quality skeleton 

data captured using a motion capturing system, along with 

introducing EMG data, which is a novel addition to the field 

of motion-related research. 

 

I. MMAct 

This dataset has been recorded from 20 distinct subjects 

with seven different types of modalities: RGB videos, key- 

points, acceleration, gyroscope, orientation, Wi-Fi and pres- 

sure signal. The dataset consists of more than 36k video clips 

for 37 action classes covering a wide range of daily life 

activities such as desktop-related and check-in-based ones in 

four different distinct scenarios. 

 

J. UTD-MHAD 

The UTD-MHAD dataset includes 27 separate activities 

done by 8 participants. Each subject did the action four times, 

totaling 861 action sequences. The RGB, depth, skeletal, and 

inertial sensor signals were captured. 

 

K. C-MHAD 

It includes two types of actions: smart TV gestures and tran- 

sition movements. The dataset contains 3-axis acceleration and 

angular velocity signals acquired by the Shimmer3 wearable 

inertial sensor at 50Hz via Bluetooth, synchronized with video 

frames captured at 15 frames per second using a laptop camera 

with a resolution of 640x480 pixels. Each action stream lasts 

two minutes, which corresponds to 1801 picture frames and 

6001 inertial signal samples. Due to Bluetooth communication 

latency, 30-40 samples at the start of each action stream are 

missing and may require no padding before usage. The sensor 

is worn on the right wrist for smart TV gestures, and on the 

waist for transition movements. 

 

L. WEAR 

WEAR is an outdoor sports dataset designed for human ac- 

tivity recognition (HAR) using both visual and inertial sensors. 

The dataset includes data from 18 subjects who participated 

in a variety of fitness activities, as well as untrimmed inertial 

(acceleration) and camera (egocentric video) data collected at 

ten distinct outdoor locales. 

 

M. LboroHAR 

Contains nine indoor activities carried out by 16 individuals. 

The dataset collects data from a variety of sensors typically 

used in indoor applications and autonomous cars, including 

the depth sensor, RGB color image (RGB-D), LiDAR sensor, 

and RGB 360 camera. It is the first publically accessible 

multimodal dataset of its sort and may be used for a variety 

of HAR applications, including as sports analytics, healthcare 

aid, and indoor smart mobility. 

N. CMU-MMAC 

A collection of multimodal measures capturing human ac- 

tivity during cooking and food preparation tasks. Recorded in 

Carnegie Mellon’s Motion Capture Lab, the database includes 

recordings of twenty-five subjects performing five different 

recipes: brownies, pizza, sandwich, salad, and scrambled eggs. 

The modalities recorded encompass video, audio, motion 

capture, internal measurement units (IMUs), and wearable 

devices. 

O. UT-Kinect 

Consists of videos collected with a single stationary Kinect 

with Kinect for Windows SDK Beta Version. It has ten 

action types: walk, sit, stand, pick up, carry, toss, push, 

pull, wave hands, and clap hands. There are ten subjects, 

and each performs each action twice. The recordings have 

three synchronized channels: RGB, depth, and skeleton joint 

positions, with a framerate of 30 frames per second (FPS). 

P. MEx 

Data from seven distinct physiotherapy exercises, each 

completed by thirty volunteers, are included in the MEx 

Multi-modal Exercise dataset. The activities were recorded 

using four different sensor modalities: two accelerometers, 

a pressure mat, and a depth camera. Exercise recognition, 

exercise quality evaluation, and exercise counting are among 

the activities for which the dataset is appropriate. 

Q. UP-Fall detection 

The dataset consists of raw and feature sets collected from 

17 young, healthy people who completed 11 activities and 

three falls each. Furthermore, the collection compiles more 

than 850 GB of data from vision devices, ambient sensors, 

and wearable sensors. 

R. HHAR 

This dataset contains measurements from two motion sen- 

sors—the accelerometer and the gyroscope—that were taken 

as users used smartphones and smartwatches to carry out pre- 

determined tasks. The dataset includes recordings of nine indi- 

viduals’ activities, including walking, biking, sitting, standing, 

climbing stairs, and descending them, made using a total 

of four smartwatches and eight smartphones. Furthermore, a 

portion of the dataset comprises accelerometer measurements 

of devices in six distinct orientations when they are immobile. 

The devices comprise 31 smartphones, 4 smartwatches, and 1 

tablet, covering 13 models and 4 brands, and operating on 

various versions of Android and iOS. 

S. Berkeley MHAD 

Data from 12 subjects, ages 23 to 30 (seven male and five 

female), plus one old subject, are included. Every participant 

executed five iterations of eleven distinct activities, resulting in 

roughly 660 action sequences with an approximate recording 

duration of eighty-two minutes. It includes data from multiple 

sensors, such as depth sensors, accelerometers, microphones, 

multi-baseline stereo cameras, optical motion capture systems, 

and others, that has been synchronized and calibrated. 
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T. MHEALTH 

It consists of recordings of the vital signs and body move- 

ments of ten volunteers engaging in twelve different physical 

activities. The dataset contains information from sensors that 

measure acceleration, rate of turn, and magnetic field direction. 

The sensors were positioned on the chest, right wrist, and left 

ankle. The chest sensor also offers 2-lead ECG readings for 

potential heart monitoring. The dataset, which was recorded 

at a sampling rate of 50 Hz, documents a variety of everyday 

activities in a non-laboratory setting. 

 

U. REALDISP 

It is comprised of data gathered with an emphasis on ideal- 

placement, self-placement, and induced-displacement situa- 

tions in order to study the impacts of sensor displacement in 

practical settings. The dataset comprises 17 persons, a variety 

of physical activities, and sensor modalities (acceleration, rate 

of rotation, and magnetic field). 

 

V. UCI HAR 

30 volunteers’ recordings of themselves engaging in six 

daily tasks while wearing a smartphone strapped on their 

waist that has an accelerometer and gyroscope integrated are 

included. 

 

W. UCI HAPT 

Recordings from thirty people who carried a smartphone 

strapped on their waist with inertial sensors and performed 

twelve distinct fundamental activities and postural transitions. 

 

X. WISDM 

Includes time-series accelerometer and gyroscope sensor 

data from 51 test subjects who completed 18 tasks for three 

minutes each using smartphones and smartwatches. 

 

VIII. ALGORITHMS USED IN MULTIMODAL COMPLEX 

HAR 

Human Activity Recognition (HAR) in multimodal complex 

scenarios often employs various algorithms for classification. 

These algorithms can be broadly categorized into machine 

learning, deep learning, and transformer-based approaches. 

 

A. Traditional Machine Learning 

Traditional machine learning algorithms have been widely 

used in HAR, particularly in early studies where deep learning 

techniques were not as prevalent. These algorithms often rely 

on handcrafted features extracted from captured data and per- 

form classification using various classifiers. Some commonly 

used traditional machine learning algorithms in multimodal 

HAR include: 

• Support Vector Machines (SVM) [108] [109] 

• k-Nearest Neighbors (k-NN) [110] 

• Decision Trees [111] [112] 

• Naive Bayes [113] 

• Gradient Boosting Machines [112] 

Traditional machine learning algorithms require extensive 

feature engineering, where domain knowledge is used to 

extract relevant features from raw data. These handcrafted fea- 

tures may include statistical measures, time-domain features, 

frequency-domain features, and other engineered representa- 

tions of the captured data. While traditional machine learning 

approaches have shown success in HAR tasks, they may 

struggle to capture complex temporal and spatial dependencies 

present in multimodal data, and their performance heavily 

depends on the quality of handcrafted features. 

In recent years, with the rise of deep learning techniques, 

traditional machine learning algorithms have been somewhat 

overshadowed by deep learning models, which can extract 

features directly from raw data. However, traditional machine 

learning algorithms still find applications in multimodal HAR, 

particularly in scenarios where interpretability and computa- 

tional efficiency are crucial factors. 

 

B. Deep Learning and Transformers 

Deep learning techniques have revolutionized the field of 

HAR by enabling the automatic learning of features directly 

from raw data. These techniques have shown remarkable 

performance in multimodal HAR tasks, surpassing traditional 

machine learning approaches in many cases. Some commonly 

used deep learning architectures in multimodal HAR include: 

• Convolutional Neural Networks (CNNs) [114] [115]: 

CNNs are widely used for processing spatial informa- 

tion in captured data, particularly in scenarios involving 

image-based modalities or sensor data. They consist of 

convolutional layers followed by pooling layers, enabling 

them to automatically extract spatial features from input 

data. 

• Recurrent Neural Networks (RNNs) [115] and variants 

(e.g., Long Short-Term Memory networks, LSTM [114]; 

Gated Recurrent Units, GRU) [116]: RNNs are well- 

suited for modeling temporal dependencies in sequential 

data, making them effective for time-series analysis in 

HAR. Variants like LSTM and GRU address the van- 

ishing gradient problem in traditional RNNs, enabling 

them to capture long-range dependencies in temporal 

sequences. 

• Convolutional Recurrent Neural Networks: combine the 

strengths of CNNs and RNNs by integrating convolu- 

tional layers for spatial feature extraction and recurrent 

layers for capturing temporal dependencies [114] [117] 

[118]. They are particularly useful for processing mul- 

timodal data streams where both spatial and temporal 

information is essential. 

• Transformers: Transformers [119] have emerged as pow- 

erful models for sequence transduction tasks, including 

multimodal human activity recognition (HAR). Unlike 

traditional recurrent or convolutional architectures, trans- 

formers rely on self-attention mechanisms to capture 

global dependencies across input sequences, making them 

well-suited for processing multimodal data streams. In the 

context of multimodal HAR, transformers can effectively 
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TABLE III 
SUMMARY OF ACTIVITY RECOGNITION DATASETS 

 

Dataset Sensors Activities 
 

pamap2 [88] 3 (IMUs) and heart rate 18 simple and complex activities 
opportunity [89] Body worn IMUs, ambient sensors, and object 

sensors 
opportunity++ [90] Body worn IMUs, ambient sensors, object sen- 

sors, and videos 
CSL-SHARE [91] Accelerometers, gyroscopes, EMGs, microphone, 

and Airborne 

35 activities 

35 activities 

22 simple and transition daily living and sports- 
based activities 

ku har [92] Smartphone accelerometer and gyroscope 18 daily activities 
SPHERE [93] Accelerometers, RGB-D, and environmental sen- 

sors 
OPERAnet [94] WiFi sensing device, ultra-wideband impulse 

radar, passive WiFi radar, and Kinect motion 
sensor 

20 daily activities 

6 daily activities 

EV-Action [11] RGB, RGB-D, EMG, and skeleton 10 single actions and 10 object actions 
MMAct [95] RGB, Keypoints, Acceleration, Gyroscope, Ori- 

entation, Wi-Fi, and Pressure 
37 activities 

UTD-MHAD [96] Kinect camera and wearable IMU 27 activities 
C-MHAD [71] Accelerometer, Gyroscope, and Video 12 actions 
WEAR dataset [97] IMUs and cameras 18 activities 
LboroHAR [72] LiDAR Sensor, RGB, and RGB-D 9 activities 
CMU Multi-Modal Activity (CMU-MMAC) [95] Videos, Audio, Motion capture, IMUs, and wear- 

able watch 
5 cooking activities 

UCSD-MIT Human Motion [98] Skeleton, EMGs, and IMUs 11 activities 
UT-Kinect [99] RGB, RGB-D, and skeleton 10 activities 
MEx [100] Accelerometers, pressure, and depth camera 7 activities 
HHAR [101] Accelerometers and gyroscopes from smart- 

phones and smartwatches 
6 activities 

UP-Fall detection [15] IMUs, EEG, and infrared 11 activities 
Berkeley-MHAD [102] RGB, RGB-D, accelerometers, and microphones 11 activities 
MHEALTH Dataset [103] ECG, accelerometer, gyroscope, and magnetome- 

ter 
12 activities 

REALDISP Activity Recognition Dataset [104] Accelerometer, gyroscope, and magnetometer 33 activities 
UCI HAR [105] Accelerometer and gyroscope 6 activities 
UCI HAPT [106] Accelerometer and gyroscope 12 simple and transition activities 
WISDM [107] Accelerometer and gyroscope 18 activities 

 

integrate information from multiple modalities [120] by 

attending to relevant parts of the input sequences. Trans- 

formers have demonstrated state-of-the-art performance 

in various multimodal HAR benchmarks [121], surpass- 

ing traditional deep learning architectures in many cases. 

Their ability to capture long-range dependencies and ef- 

fectively integrate information from disparate modalities 

makes them particularly well-suited for complex real- 

world scenarios where understanding the relationships 

between different sensor inputs is crucial for accurate 

activity recognition. 

IX. EVALUATION METRICS 

To evaluate the multimodal HAR system’s performance, 

several metrics can be used. Let N denote the total number of 

activity instances in the dataset. Additionally, let TP , TN , 

FP , and FN represent the counts of true positives, true 

negatives, false positives, and false negatives, respectively. 

 

A. Accuracy 

The ratio of accurately identified examples to the total 

number of occurrences is known as accuracy, and it indicates 

how accurate the HAR system is: 

 

 

Deep learning models in multimodal HAR have the ad- 

vantage of automatically learning relevant features directly 

 

 

 

B. Precision 

Accuracy = 
TP + TN

 
N 

(1) 

from raw data, eliminating the need for handcrafted feature 

engineering. These models can effectively capture complex 

temporal and spatial dependencies present in multimodal data, 

leading to improved classification accuracy and robustness. 

The percentage of successfully anticipated positive instances 

among all positively predicted instances is quantified by pre- 

cision. It is computed as follows: 

However, deep learning models often require large amounts 

of annotated data for training and may suffer from overfit- 

ting in scenarios with limited data availability. Regularization 

techniques and data augmentation strategies are commonly 

 

 

C. Recall 

Precision =  
TP 

TP + FP 
(2) 

employed to mitigate these challenges and improve model 

generalization. 

Recall, which is a statistical measure of the percentage of 

accurately predicted positive cases among all actual positive 
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instances, is also referred to as sensitivity or true positive rate. 

Recall = 
TP 

(3) 
TP + FN 

 
D. F1 Score 

The F1 score strikes a balance between recall and precision 

by combining the two into a single metric. The harmonic mean 

of recall and precision is used to calculate it: 

sports training and fitness monitoring. By analyzing data 

from wearable devices, video analysis, and audio feedback, it 

becomes possible to track and assess athletes’ performance, 

provide real-time coaching, and offer personalized training 

programs. This technology can be used in sports analytics, 

rehabilitation, and general fitness tracking. 

 

XI.  CHALLENGES AND FUTURE RESEARCH 

Despite the advancements in multimodal complex HAR, 

F1 Score = 2 × 
Precision × Recall 

Precision + Recall 

 

E. Confusion Matrix 

(4) 
there are several challenges that need to be addressed for 

further improvements. This section discusses some of these 

challenges and suggests potential directions for future re- 

search. 

A tabular representation of the classification results that 

offers a thorough analysis of the classification performance 

is called a confusion matrix. For each class, it displays the 

quantity of cases that were successfully and wrongly classified. 

Evaluation measures including accuracy, precision, and recall 

can be calculated using the confusion matrix. 

It is important to select the appropriate evaluation metrics 

based on the specific objectives and characteristics of the 

multimodal HAR system. 

 

X. APPLICATIONS 

Applications of multimodal complex activity recognition 

span a wide range of domains, benefiting various fields and 

industries. 

Multimodal complex activity recognition can be applied 

in healthcare settings to monitor patients’ activities and pro- 

vide personalized care. It can aid in fall detection, activity 

tracking, and assessing overall wellbeing. By combining data 

from wearable sensors, video surveillance, and audio analysis, 

healthcare professionals can gain insights into patients’ daily 

activities and identify any anomalies or potential health risks. 

Multimodal complex activity recognition plays a crucial role 

in enabling effective and natural interactions between humans 

and robots. By integrating multiple modalities such as vision, 

speech, and gesture recognition, robots can better under- 

stand human intentions and adapt their behavior accordingly. 

This technology finds applications in service robots, social 

robotics, and collaborative robotics, enhancing human-robot 

communication and cooperation. Moreover, it contributes to 

the development of smart environments that can understand 

and respond to human activities. In smart homes, for instance, 

combining data from sensors, cameras, and audio analysis 

allows for context-aware automation, energy management, and 

personalized assistance. These systems can recognize activities 

like cooking, watching TV, or sleeping, and adjust lighting, 

temperature, and other environmental factors accordingly. 

Multimodal complex activity recognition is valuable in 

surveillance and security applications. By integrating video 

analysis, audio recognition, and sensor data, it becomes pos- 

sible to detect and classify suspicious or abnormal activi- 

ties in public spaces, airports, or critical infrastructure. This 

technology enhances situational awareness, facilitates early 

threat detection, and aids in crime prevention. Additionally, 

multimodal complex activity recognition has applications in 

 

A. Data Collection and Annotation 

Collecting and annotating large-scale multimodal complex 

HAR datasets is a challenging task. The data collection 

process involves capturing synchronized data from multiple 

sensors, such as cameras, inertial sensors, and microphones. 

The annotation process requires expert knowledge and manual 

labeling of complex activities, which can be time-consuming 

and prone to subjective biases. Future research should focus on 

developing efficient data collection techniques and exploring 

semi-automatic or automatic annotation methods to facilitate 

the creation of comprehensive multimodal complex HAR 

datasets. 

 

B. Sensor Fusion 

Effective fusion of information from multiple modalities is 

crucial for accurate complex activity recognition. Developing 

robust fusion techniques that can effectively combine informa- 

tion from different sensors is an ongoing research challenge. 

Additionally, learning effective representations from multi- 

modal data is essential for capturing the inherent complexity 

and temporal dependencies in complex activities. Future re- 

search should explore innovative sensor fusion architectures 

and representation learning algorithms to improve the perfor- 

mance of multimodal complex HAR systems. 

 

C. Model Interpretability 

Multimodal complex HAR systems often utilize deep learn- 

ing models, which are known for their black-box nature. 

Interpreting and explaining the decision-making process of 

these models is a significant challenge. Understanding the 

rationale behind the predictions can enhance the trust and 

usability of the system, especially in critical applications 

such as healthcare and surveillance. Future research should 

focus on developing interpretable and explainable models for 

multimodal complex HAR, enabling users to understand how 

and why certain activity predictions are made. 

 

D. Real-Time Processing and Resource Constraints 

Real-time processing of multimodal complex HAR is cru- 

cial for applications that require immediate responses, such 

as human-robot interaction and real-time monitoring. How- 

ever, multimodal processing can be computationally intensive, 
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making it challenging to achieve real-time performance, espe- 

cially in resource-constrained environments. Future research 

should investigate efficient algorithms, hardware acceleration 

techniques, and optimization strategies to enable real-time 

processing of multimodal complex HAR systems on devices 

with limited computational resources. 

 

E. Domain Adaptation and Generalization 

Multimodal complex HAR models trained on one dataset 

may not generalize well to different domains or unseen activ- 

ities. Adapting the models to new environments or activities 

without extensive retraining is a challenge. Future research 

should focus on developing domain adaptation techniques and 

transfer learning approaches to improve the generalization 

capability of multimodal complex HAR models, enabling them 

to perform well in diverse real-world settings. 

 

F. Privacy and Ethical Considerations 

Multimodal complex HAR involves the collection and pro- 

cessing of sensitive personal data. Ensuring privacy, data pro- 

tection, and ethical considerations are important challenges to 

address. Future research should focus on developing privacy- 

preserving techniques, robust anonymization methods, and 

ethical guidelines for the collection, storage, and usage of 

multimodal complex HAR data. 

Addressing these challenges and exploring the suggested 

directions for future research will contribute to the advance- 

ment of multimodal complex HAR and its applications in 

various domains, including healthcare, smart environments, 

and human-computer interaction. 

 

XII.  CONCLUSION 

The review article discusses various types of sensors utilized 

in Human Activity Recognition (HAR), such as visual sen- 

sors, wearable inertial sensors, and their combinations. These 

sensors are cost-effective and readily accessible. However, 

integrating data from different sensor modalities poses a sig- 

nificant challenge for accurately classifying human activities. 

It’s important to highlight that research in multimodal HAR 

is continuously progressing, with scholars exploring innovative 

algorithms, architectures, and methodologies to enhance the 

precision, resilience, and real-time capabilities of activity 

recognition systems. 

In summary, multimodal complex HAR demonstrates con- 

siderable promise across numerous fields, including health- 

care, smart environments, and human-computer interaction. By 

harnessing the complementary aspects of various modalities, 

these systems can offer valuable insights and support diverse 

applications aimed at enhancing human life and interaction 

with technology. 
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