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Abstract— Developing and implementing the machine learning 

applications as quickly as feasible is the aim of commercial 

machine learning (ML) initiatives. A lot of machine learning 

trials, however, fall short of their requirements and 

expectations because automating and operationalizing the 

machine learning systems is so challenging. MLOps, a model 

for machine learning operations, deals with this. There are 

several components to MLOps, including development culture, 

collections of concepts, and best practices. The consequences of 

MLOps for academics and professionals are, however, yet 

unknown. As a result, this study provides a detailed description 

of the underlying concepts, elements, as well architecture, to aid 

in the development of usable software based on ML methods 

that can make MLOps models simple to monitor, integrate, and 

scale securely to help save maintenance costs and improve the 

number of software deployments. The study draws attention to 

the remaining problems in the area before it is done. 

 

Index Terms— CI/CD, DevOps, MLOps, Container. 
 

I. INTRODUCTION 

Machine learning operations (MLOps), the process of 

deploying and continuously integrating (CI/CD), machine 

learning-enabled systems, are receiving more attention due to 

the ML applications' explosive rise in popularity [1]. The 

process of automation for a typical CI/CD pipelines must be 

expanded to include monitoring retraining of the model during 

and after the production deployment because the modifications 

might alter not just the code but additionally the ML model 

attributes as well as the data itself [1]. Furthermore, the 

reusable, modular, and maybe shareable components are 

necessary for machine learning pipelines  to facilitate developer 

repeatability by separating the deployment machine or 

environment of the execution time for a specific code, these 

components should preferably be containerized [2].   

ML has become a vital element for unlocking data's capabilities 

and facilitating more innovative, effective, along with 

sustainable business practices [3]. Many ML applications, 

however, have not been as successful as anticipated in the real 

world. This is not unexpected from a research standpoint 

because the ML community has concentrated mostly on 

developing ML models rather than developing ML products 

that are ready for production and facilitating the essential 

coordination of the resulting ML systems [3]. 
 

In addition, these applications began to generate and store 

huge quantities of data as a result of their activities. These 

new advances necessitate real-time application operation 

monitoring [4]. If MLOps model selection and training are 

not regularly and consistently observed, The market worth of 

applications may decrease and organizations may suffer from 

a financial loss, but in the worst case scenario, they could 

harm their reputation [5]. 

 

The recently developed field of machine learning engineering 

called "Machine Learning Operations" (MLOps) is discussed 

in this research in order to effectively handle the issue of 

creating and monitoring effective ML. The study adopts an 

all-encompassing viewpoint to explain the related 

components, principles, responsibilities, and architectures. 

While recent studies cover a variety of specific MLOps 

topics, an absence of a comprehensive conception and 

explanation for the ML systems monitor appears. Various 

ways to interpret the phrase "MLOps" may result in 

misconceptions, which may result in setup errors for the 

entirety of the machine learning application. 

 

The study's main contribution is as follows: 

1- Creates a shared understanding of the Container, 

DevOps and MLOps phrases and associated ideas. 

2- Elucidating the significance of MLOps principles, 

presenting and highlighting the key elements to 

successfully apply MLOps. 

3- Highlights a variety of studies on machine learning-

based container orchestration techniques. 

4- Provides clear recommendations for MLOps practices 

and makes it possible to make predictions that are more 

accurate in real-world environments. 

5- The research concludes by discussing the MLOps' 

potential future directions. 

         

The remaining research is structured as follows. Sect. 2, 

Illustrates the necessary definitions. Sect. 3, presents the 

relevant research in the topic. Sect. 4, concludes the work 

with a short summary.
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II. BACKGROUND 
 

An overview of the fundamentals of DevOps, virtual 

machines, containers, microservices, Machine Learning and 

MLOps as a crucial stage in the software development life 

cycle is intended to be provided in this section. 
 
 

A. DEVOPS   

 Software engineering has historically employed a variety 

of software process models and development techniques, 

including Waterfall and Agile. These approaches share the 

same goal of producing software applications that are ready 

for production [3]. The old waterfall methodology has been 

replaced by DevOps in software development teams 

recently because the traditional life cycle is insufficient for 

dynamic projects, which are necessary for the process for 

building  Machine Learning (ML) applications to shorten the 

time that developers spend engaging in daily tasks [6], thus; 

ML pipeline is established in collaboration with DevOps 

with the objective of automating the ML lifecycle. Figure 1. 

Represents the differences between waterfall and DevOps 

and define the ML pipeline stages [7].  

 

Figure 1. Distinction between the manual machine learning pipeline, 

DevOps, and Waterfall software development life cycles [7]. 

The recent software deployment methodology named as 

"DevOps" blends IT operations (Ops) with software 

development (Dev) [8]. Software applications can be 

automated, continuously integrated, continuously deployed, 

monitored, and teamwork grows with the aid of DevOps [9] 

[10]. The two primary DevOps techniques are Continuous 

Integration and Continuous Delivery in addition to the 

Continuous Testing, so DevOps pipeline, commonly 

referred to the CI/CD pipeline [7] [9] [11].  

Software development with an emphasis on automating the 

development and combining of code from several 

developers is known as Continuous Integration, or CI. In 

this method, developers are asked to merge their changes on 

code more frequently to the main repository in order to 

shorten development cycles and enhance quality. This 

procedure's primary elements include automated software 

development, testing procedures, and version control 

systems [7] [12]. The main objective of Continuous 

Delivery (CD), which seeks to deliver newly created 

features to the end user in the most expedient manner, is to 

build the software in a way that is continuously in a state 

suitable for production so that code modifications may be 

provided on request swiftly and safely [7] [13] [14] . 

Continuous Testing, or CT, is the practice of running 

automated tests as component of the pipeline for software 

delivery with the goal of receiving prompt feedback on the 

business concerns associated with an upcoming software 

release [15]. 

CDE, or Continuous Deployment, is a unique method. A 

continuous deployment approach is used to automatically 

release each software change to production. A majority of 

companies have procedures in place that require external 

clearance before sharing information with users. While 

continuous deployment is optional and can be avoided, 

continuous delivery is often deemed mandatory [7] [12].  

Continuous Monitoring is an automated procedure to 

evaluate a deployed product's performance in real time 

against business requirements [10] [16]. Figure 2. 

Represents the different between each software delivery 

pipelines [10]. 

 

Figure 2. Software Delivery pipelines [10]. 

There are numerous problems associated with the DevOps 

methodology that the organization must overcome during 

the DevOps transformation phase. Table 1, lists these 

challenges. 

TABLE I 

DEVOPS CHALLENGES [10] 
 

Qualified Participants  It can be difficult to integrate DevOps 
capable individuals into a team. 

Management  

 

Getting management support for DevOps 

procedures is difficult. 

Build process  
 

The DevOps build process is becoming 
more sophisticated. 

Legacy system 

 

Making DevOps and legacy systems work 

together. 

Security  
 

Realizing pipeline security in the DevOps 
development process. 

Expert guidance Locating skilled professionals to assist with 

DevOps operations. 

Persistent cultural 
practices  

Shifting established corporate culture to 
facilitate the implementation of DevOps. 

Tool utilization  Integrate with a huge number of tools. 

Process and mentality 

adaptation 

Modifying some organization procedures 

and mentality in order to implement 
DevOps successfully. 

Cooperation  Establishing cooperation between 

Operations and Development.  

Monitoring The DevOps monitoring process is 
becoming more essential at every step on 

the pipeline. 

Expenses  Determining the hidden expenses of 
adopting DevOps 
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B. CONTAINERS AND DEVOPS 

 

Before Docker containers were invented, large, 

technologically-dependent businesses like Walmart and 

Chase Bank employed servers and added a lot of them, which 

resulted in over-allocation, to manage the growing volume 

of customer requests. The drawback of over-allocating 

servers was that it was very costly and that if it didn't scale 

effectively, the servers would burn out and the company 

would fall apart. Then, a concept known as virtualization 

emerged, which made it possible to run multiple operating 

systems on the same host. This was revolutionary for 

industries because it allowed any application to be run in 

isolation on the same server and infrastructure. It was like 

having a completely different computer running on the same 

machine [17]. 
 

Containerization is a modern paradigm that is characterized 

as an operating system (OS) virtualization technique that 

permits programs to run in distinct user spaces while sharing 

a single OS. Simply, containers are a considerably fewer 

resource and time intensive virtualization principle [17]  [18] 

[19]. For systems that enable the temporary, on demand 

execution of computing processes, like Function As A 

Service (FaaS) platform,  Containerization is a popular 

technique [20] [21].  For cloud-native platforms, container 

design is similar to object design in object-oriented (OO) 

software systems in that it allows automated orchestration 

and agile DevOps methods: Every container will be assigned 

a particular task to complete effectively [22] [23]. The 

"Single Concern Principle" has been used to describe how 

cloud-native containers can grow dynamically and replace, 

re-use, and update seamlessly by focusing on a single issue, 

which is equivalent to the single responsibility concept in 

OO-languages [23] [24].  
 

Dockerizing aims to fully execute the DevOps paradigm 

[25]. Docker enables the hosting and execution of any kind 

of software, including packaged, in-house, custom-built, 

databases, platforms, middleware, and applications. 

Furthermore, it is now much easier to design, publish, 

deliver, and deploy software quickly and effectively [26]. 

Moreover, dockerizing provides an easy way to limit the 

amount of resources that the containers can utilize [27], and 

ensures that application stacks running on the same Docker 

layer are isolated from one another [28]. 

Organizing the configuration interface and optimizing 

machine setup are two benefits of Docker. As CI/CD 

establishes the relationship between Docker and DevOps, 

Docker can be utilized to improve the company's DevOps 

operations and maintains consistency between the 

production and testing environments [17]. The development 

process is improved by the usage of DevOps and container 

deployment together [29]. With containers, developers may 

specify exactly how to build a software environment that 

works for a certain piece of code. This covers environment 

variables, system libraries, third-party libraries, the basic 

operating system type, as well as the process of compiling a 

software application [29]. 

Figure 3 illustrates how Docker containers can operate on 

both tiny and large devices, with an average speed difference 

of 26x between them and virtual machines (VMs) [18] [30]. 
 

 
Figure 3. Virtual machines vs. Containers [18] 

 

Table 2, provides an overview of the advantages of using 

containers for software deployment compared to virtual 

machines. 

TABLE II 

 ADVANTAGES OF VIRTUAL MACHINES VS CONTAINERS [19] 
 

Comparative element VM Container 

Operating System  Guest OS Shared-Host OS 

Starting up time Take a while to boot 
up 

Extremely quickly 

Standardization OS-specific Depending on the 

application 

Movability Less portable More portable 

Server’s Demand Additional servers 
are required. 

Fewer servers are 
needed. 

Security Any operating 

system that operates 
in a VM has the 

ability to secure the 

date of the user. 
Security is also 

dependent on the 

hypervisor. 

Because the kernel is 

shared by all of the 
apps, security may 

suffer. Therefore, it 

doesn't have any 
security measures. 

Low redundancy More redundant 
information 

Few overlapping 
details 

Hardware access Absence of direct 

hardware access 

Direct hardware 

access 
 

Distribution of 

Resources 

Significant number 

of resources needed 

Less resources 

required 

Memory requirement High memory needs  Less memory  
 

Sharing files and 

library  

Isn’t possible Is possible by using 

Linux commands 

 

Using a virtual machine or a container is an option available 

to DevOps experts throughout the software development 

process' deployment phase. Virtual machines are more 

dependable and safer since they enable total resource 

isolation and high adaptability. They need more resources 

than containers, though, and are heavier. On the other hand, 

applications and their dependencies are the main emphasis of 

containers. They are simple to deploy and manage and just 

require a single kernel to operate. It is also possible to deploy 

numerous containers on a single host or virtual machine; but, 

in the event that the host goes down, there is a greater chance 

that all of the containers would fail as well. Consequently, 

the decision between virtual machines and containers is 

based on the particular requirements of the project, including  

the degree of security, the necessary stability and the 

availability of resources. 
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C. MICROSERVICES 
 

Applications that have been divided into their essential 

functions (or activities) are called Microservices.  Within a 

container (like a Docker container), each activity functions 

as a separate "service" and uses the network to interact with 

other containers [31].  

Compared to conventional, monolithic programs, 

microservices have a number of benefits, such as great 

flexibility, extremely good resource management, and 

independent updating cycles [31]. Since these monolithic 

applications adhere to the paradigm of “all in one” in which 

every functional components are produced followed by 

configuration to precisely single deployment entity, 

specifically, single container, the monolithic design is only 

appropriate for tiny scale systems with straightforward inner 

structures [32]. If "Microservices" architecture, as opposed 

to monolithic design, had been employed during the project 

development phase, it would have assisted in monitoring 

ML initiatives. It is recommended to divide single-module 

systems across several connected and independent 

microservice modules using Microservice Architecture 

(MSA) [33] [34].  
  

D. MACHINE LEARNING  

Among the newest and most widely adopted 

technologies of the fourth wave of industrialization is 

machine learning, or ML. It gives systems the capacity to 

automatically grow and learn from the lessons learned out of 

having to be manually designed [35]. Building computer 

programs with data-driven learning capabilities is the aim of 

ML. The knowledge that has been acquired by a machine 

learning system must be stored in a knowledge 

representation structure known as an inductive hypothesis, 

which is usually in the form of a model. Figure 4, presents a 

general approach to machine learning [36]. 

 

Figure 4. ML Approach [36]. 

Machine learning models are frequently applied to voice and 

facial recognition applications. But creating and utilizing 

machine learning (ML) techniques is more intricate and 

challenging than assessing and validating models using 

normal methodologies [37]. 

There are four phases for the machine learning deployment, 

and there are various factors including law, ethics, security, 

and end user trust that can affect one or more of these phases. 

These phases include: Model verification, which includes 

formal and test-based verification, requirements encoding; 

Model learning, which includes selection and training the 

model and hyperparameter selection; Model deployment, 

which includes monitoring, updating, and integrating; and 

data management, which includes gathering, preparing, 

expanding, and interpreting data. The difficulties and 

concerns for every phase at each step during ML deployment 

are shown in Table 3 [38]. 

TABLE III  

ML DEPLOYMENT CONSIDERATIONS AND ISSUES [38] 
 

Deployment Stage Deployment Step Considerations and Issues 

Data Management Data collection Data finding. 

Data preprocessing 
Data fragmentation. 

Data cleansing. 

Data expansion 
Classifying the substantial 

amounts of data. 

Expertise availability. 

Inadequate data with a 

significant variance. 

Data interpretation Profiles of data. 

Model learning Model selection 
Model challenges. 

Limited resources. 
Model's interpretability. 

Training 
Computational expenses. 

Environmental effect. 
Privacy conscious 

instruction. 

Hyper-parameter 

selection 

Resource needs. 

Unknown search 
capability. 

Hardware enhancement. 

Model verification Requirements 

encoding 

Performance indicators. 
Business driven indicators. 

Formal verification 
Standard structures. 

Test-based 

verification 

Testing by simulation. 

Data validation procedures. 

Model deployment Integration 
Operational support. 

Reusing models and code. 
Software engineering anti-

patterns. 

Varied team dynamics. 

Monitoring 
Continuous feedback. 
Identification of outliers. 

Tools for custom design. 

Updating 
Ideas drifting. 
Continuous delivery. 

Intersecting 

elements 

Ethics 
Amplification of opinions. 

Accountability and equity. 

Authorship. 

Decision making. 

Law 
National laws. 

Following existing rules. 
Concentrate on technical 

fix. 

End users’ trust 
End user participation. 

User experience. 

Describe ability record. 

Security 
Data tainting. 

Model stealing. 
Model reversal. 

 
E. CONTAINERS AND MLOPS 
 

DevOps is expanded into the machine learning domain 

by MLOps [39]. MLOps relates to the complete set of best 

practices and procedures from designing the training data to 

the end deployment lifecycle [8]. To put it simple, MLOps 
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is DevOps's AI equivalent [8]. Figure 5. Shows the 

integration of MLOps [6] [37] and Figure 6. Shows An 

overview of the MLOps Flow  [37]. 

 

Figure 5. MLOps Integration [6][37]. 

 

 

Figure 6. Overview of the MLOps Flow [37]. 

Like DevOps, MLOps sets a major emphasis on automation 

while maintaining focus on each step of the ML pipeline 

through the use of independent, modular components 

designed to prevent implementation problems and 

automatically optimize models that may be utilized by other 

configurations [40], by involve containerization and 

dockerizing in MLOps phases [6]. Figure 7. Shows the 

phases of MLOps [37]. 

 
Figure 7. MLOps Phases [37]. 

 

 

 

MLOps has certain implementation issues. Distinct 

operational, machine learning system, and organizational 

challenges have been identified as these outstanding issues. 
 
1) Distinct Operational Challenges 
 

Because of the several stacks of hardware and software 

components and their interdependencies, machine learning 

is hard to operate manually. For this reason, reliable 

automation is needed [41] [42]. Furthermore, skill 

retraining is required because to an ongoing entry of new 

data. That being said, this recurring task calls for a high 

degree of automation [43]. Because of these recurring 

processes produce a large number of artworks, efficient 

governance is required [44] [45] [46].  In addition, versioning 

the code, model, and data is necessary to guarantee 

reproducibility and reliability [44] [3]. It may be difficult 

to handle a possible support request due to the intricacy of 

the situation (e.g., by identifying the real cause) [47], 

Therefore, in order to support in making informed 

judgements, it is imperative to monitor each step and collect 

as much information as possible. 
 
2) Machine Learning System Challenges 
 

Designing MLOps systems for demand fluctuations 

may be challenging, particularly in terms of ML training 

and monitoring protocols [41]. This may be the result of 

extensive and irregular data [48], thus, it is challenging to 

forecast with precision when the essential infrastructure 

components (CPU, RAM, and GPU) will be required, along 

with the capacity of the containers to scale requires a high 

degree of flexibility [41] [47]. 
 
3) Organizational Challenges 
 

In organizational environments, data science practice 

mentality and culture are often problematic [49]. The study's 

conclusions imply that a shift in mindset distant from model-

driven ML and towards the system-oriented field is 

necessary to effectively develop, implement, and operate 

machine learning systems. This can be accomplished by 

focusing more on the data-related procedures that take place 

before the machine learning model is developed. When 

developing ML solutions, roles specifically involved in these 

tasks should have a system-focused view. MLOps need to 

possess a wide range of specialized skills and duties. 

primarily in the fields of architecture, data engineering, 

machine learning, and DevOps engineering, as there aren't 

enough highly qualified professionals to occupy these roles 

[44] [50] [51]. MLOps is often left out of data science 

classes, therefore this is significant to the kind of training that 

workers of the future will require [41]. Apart from creating 

models, students also need to become proficient in the 

elements and methods required to build machine learning 

systems. 

MLOps must therefore take a cooperative approach. This 

is difficult since teams typically work in conditions that are 

more solitary than collaborative and communication is 

made much more difficult by specialized terminologies 

and varying knowledge levels. 



Informatics Bulletin, Helwan University, Vol 7 Issue 1, January 2025  

III. STRATEGIES AND APPROACHES 
 

The methodologies and approaches used by recent studies to 

handle the subjects of containers and MLOps—with an 

emphasis primarily on the monitoring phase—will be the 

subject of the following section. Additionally, researches 

using MLOps algorithms and the classification of the 

majority ML methods employed in orchestration of 

containers domain will be presented in this part, 

demonstrating their efficacy in application analysis and 

monitoring. 
 

A. STRATEGIES  
 

The results of the reviewed studies show that there are four 

primary categories for monitoring the containerized 

environments: Technical Characteristics, Applicability, 

Effect and Evaluation.  

There are several subcategories within each of these main 

categories that offer more detailed information about the 

monitoring methods. The strategies for monitoring 

containerized environments categorized by category are 

displayed in Table 4.

TABLE IV 

 MONITORING STRATEGIES FOR CONTAINERIZED ENVIRONMENT. 
 

Category Sub- Category Summary/Example 

Technical Characteristics 

 

Monitored object Containerized apps, container engine, and/or host OS. 

Intrusiveness Internal, external or both. 

Required resources Hardware, software or both. 

Detection strategy Anomaly or misuse based. 

Analysis strategy ML and rule-based, statistical, rule-driven analysis, filtration and confirmation, and remote verification. 

Analysis duration Instantaneous or offline. 

Analysis parameters  Configuration files, an app, system invocations, or traffic or sensor data, or. 

Measures Resource usage for CPU, memory or network, communications with the operating system. 

Analysis process Detailed steps for analysis. 

Response Logging, setting up alarms, or thwarting attacks. 

Application Domain IOT, cyber–physical, cloud or high-performance computing, general-purpose. 

Software category Kubernetes, Linux or Docker. 

Effect Specifically aimed 

threats 

Spoofing, manipulation, rejection, data exposure, denial of service, and privilege elevation. 

Directed assaults Malware, unapproved entry, kernel exploits, and changes of binaries. 

Certain errors Network latency, memory leaks, and log explosions. 

Pros and cons Advantage: enhanced verification. 

Disadvantage: inaccurate anomaly prediction. 

Evaluation - Metrics for evaluation: recall, accuracy, detection rate, and performance. 

1) Technical Characteristics 
 
Explains the essential actions, materials, and analysis 

findings, as well as the types of analysis and detection that 

the monitoring approach can apply. The following are ten 

subcategories within this category. 
 

• Monitored object 
 
The item under method monitoring in the container-based 

virtualization environment. The containerized apps, the 

container engine, and/or the host operating system (OS) can 

all be this. 
 

• Intrusiveness 
 
This describes whether the monitoring of the 

environment is conducted externally or inside. 
 

• Required resources 
 
The materials needed to run the monitoring method. 

These resources may consist of hardware, software, or both. 
 
 
 
 

• Detection technique 
 
In order to differentiate among two distinct approaches 

of incursion detection: anomaly and misuse-based. 
 

• Analysis strategy 
 
This is the approach used by the method for keeping an 

eye on and evaluating the activities occurring within the 

virtualized environment. ML-based, rule-based, statistical,  

rule-driven analysis, filtration and confirmation, and remote 

verification are some examples of analysis methodologies. 
 

• Analysis time 
 
Indicates whether offline or real-time mode monitoring is 

being done. 
 

• Analysis input 
 
The resources used as an input by the technique to do the 

analysis. These resources may include, for example, a series 

of system calls made in a predetermined duration, the possible 

app, traffic and sensor data, or configuration information. 
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• Measures  
 
Measurements that were gathered, such as how 

frequently the OS was used and how much memory, CPU, and 

network was used. 
 

• Analysis process 
 
This is a thorough, step-by-step explanation of the 

analysis process. 
 

• Response 
 

What happens when an abnormality or violation is found 

by the monitoring mechanism. This can involve things like 

setting off an alarm, documenting information, or thwarting 

an attack. Furthermore, there are two types of monitoring: 

active and passive. The first type is event-driven, meaning it 

tracks the occurrence of events rather than being based on 

time. The second type is reliant on periodic status 

examination polling and is therefore capable of transitory 

attacks, or attacks that take place in between polling. Active 

monitoring, however, is subjected to attacks that do not fall 

inside the defined occurrences and hence evade detection 

systems.  
 

2)  Applicability 
 
Clarifies explains the areas where the monitoring methods 

may be applied. The following are two subcategories within 

this category. 
 

• Domain 
  

The area may fall within the categories of IoT, cyber-

physical systems, general purpose, cloud or high-

performance computing. 
 

• Software category 
 

This indicates the kind of software that can be used with 

the monitoring technique, such as Kubernetes, Docker, and 

Linux containers. 
 

3) Effect 

Outlines the results and the objective of the  

monitoring methods. The following are four subcategories 

within this category. 
 

• Expected threats 
 

The STRIDE term or the security risks that the 

monitoring method focuses on. Spoofing, manipulation, 

rejection, data exposure, denial of service, or privilege 

elevation are some examples of the dangers.  
 

• Expected attacks 
 
These are the specific security attacks that the 

monitoring method is intended to stop. Malware, 

unauthorized entry, kernel exploits, traffic congestion on the 

network as well binary alteration are a few examples of the 

attack types. 
 

• Expected faults 
 
The errors that the method aims to correct, such as  

memory leaks, CPU overuse, delay in networks, and log 

explosions. 
 

• Benefits and drawbacks 
 

An explanation for the monitoring approach's benefits 

(like improved verification) and drawbacks (like erroneous 

anomaly prediction). 
 

4) Evaluation 
 

Explains the kind of assessment that is carried out using 

the monitoring approach; it may involve testing, case studies, 

or experiments. It also covers the evaluation process, 

evaluation results, and evaluation metrics like performance. 
 

B. APPROACHES 

 

VM orchestration has been implemented using machine 

learning (ML). For instance, various publications have 

addressed early attempts to auto-configure virtual machines 

(VMs) using reinforcement learning (RL) methods. 

Container orchestrators in conventional cloud computing 

platforms are typically built with heuristic policies that 

ignore the variety of workload circumstances and demands 

for quality of service (QoS).  
With the goal of automating deployment of application as 

well enabling flexible setup adjustments during runtime of a 

wide variety of workload types, orchestration of the 

container gives cloud service suppliers the authority to 

ascertain the configuration, deployment, and maintenance 

procedures for containerized applications in cloud-based 

computing environments [52] [32]. A ML frame work of 

container orchestration is shown in Figure 8 [32]. 

The following is the primary shortcomings of container 

orchestration. 
 

1) Metrics level 
 

The existing container orchestration approaches mostly 

focus on assessing infrastructure-level metrics, with little 

attention paid to application-level metrics and particular QoS 

needs. When it comes to tasks like task completion times, 

communication delays, and delays in task deployment, 

containerized workloads could have more stringent time 

limitations than standard cloud workloads. 
 

2)  Policies 
 

The majority of the approaches are small-scale, static 

heuristic procedures that are configured offline based on 

specific workload scenarios. For example, threshold-based 

auto scaling schemes may only be appropriate for workload 

management within a pre-specified range. These policies are 

unable to manage workloads that are extremely dynamic and 

require programs to be scaled in or out at runtime in 
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accordance with predetermined behavior patterns. 
 

3)  Performance 
 

When the system scales up, heuristic techniques may 

perform significantly worse. Algorithms for bin packing, 

such as least fit and best fit, are commonly employed to 

address issues related to resource allocation and task 

scheduling. On the other hand, these techniques could not 

function well in large-scale computing clusters when job 

scheduling delays are considerable. 
 

4)  Resources 
 

Typically, co-located apps disregard resource contention 

and performance interruption. Application performance 

degradation, increased maintenance expenses along with the 

breaches of service-level agreements (SLAs) could result 

from co-located apps competing for shared resources. 
 

5)  Dependency structures 
 

The machine learning models are very simple for 

containerized workload scenarios, although they are only 

useful for conventional cloud apps; When resource 

provisioning, the dependencies among the components of a 

containerized application are not considered. For example, 

as compared to typical monolithic programs, Microservice 

apps that are containerized are more lightweight and 

decentralized. Within an application, various microservice 

units are connected internally. The dependencies of the 

majority of other microservices are essential elements of a 

microservice architecture and are more prone to experience 

the breaches of service level objectives (SLO) because of 

increased the requirements for resources as well as 

communication expenses. 

 
Figure 8. A high-level ML container orchestration framework [32]. 

 

As per the studied researches the taxonomy of container 

orchestration based on machine learning can be classified 

into five main classifications. Summary of the primary 

categories together with their corresponding subcategories 

are displayed in Table 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE V 

 CONTAINER ORCHESTRATION CATEGORIES 
 

Category Sub-Category Summary 

Application Architecture Monolithic Adhere to an all-in-one design in which every functional module is created and set up inside of a 

single deployment unit, or container. 

Microservices For various functionalities and corporate goals, every microservice component can be installed, 

deployed as well run separately. 

Serverless A paradigm for event-driven applications that performs stateless computing operations is 

defined by the serverless architecture. Functions are often brief segments of code with particular 

configurations and constrained execution times that are hosted in function containers and are 

intended to carry out certain user-defined capabilities. 

Infrastructre Single cloud Constructed using resources from a single cloud service provider, either public or private, to host 

and offer services for every application. 

Multi cloud Incorporates a variety of cloud services, such as private, public, or a combination of both. 

Numerous factors, including resource configurations, pricing, network latency, and geographic 

locations, might vary throughout cloud service providers, providing greater options for 

application deployment optimization. 

Hybrid cloud Is made up of several cloud components, such as fog, edge, or private clouds. Deploying all of 

the data and apps to public or private clouds isn't always efficient in this approach, however at 

fog or edge devices, the hybrid cloud can allow data and apps to be installed and processed. 

Optimization objectives Resource efficiency Energy and cost efficiency measures for resource utilization at the infrastructure level.   

SLA assurance Auto scaling is typically used to respond to the constantly shifting dynamic and unpredictable 

demands by automating application maintenance with SLA assurance. 

Behavior Modeling and Prediction Performance 

analysis 

Identifies the relationship between application-level or infrastructure-level statistics to represent 

the performance of the application and the system statuses. 
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Dependency 

analysis 

Examines the inherent dependencies between containerized application components. 

Comprehending the distribution of workload and pressure among application components in 

order to accurately configure resources. 

Anomaly detection Helps prevent SLA breaches and system crashes by classifying and identifying abnormal system 

behaviors, such as security risks, performance degradation, workload spikes, instance failure and 

resource overloading. 

Workload 

characteristics 

By assigning resources precisely in response to incoming workloads, to improve the caliber of 

resource provisioning choices, a comprehension of workload patterns is necessary. 

Resource Provisioning Scheduling The overall performance of the application and the efficiency of its resources are directly 

impacted by the quality of scheduling decisions. 

Scaling The process of adjusting the size of compute nodes or containerized applications in response to 

possible workload variations. This process makes sure that the applications are supplied with 

sufficient resources to reduce the likelihood of SLA breaches. 

Migration Transferring a task or set of tasks from one node to another. 

 
The studied researches, evaluating the studies that published 

between 2016 and 2023, discussed a range of algorithms for 

machine learning which have been used to container 

orchestration, encompassing tasks such as workload 

modelling and reinforcement learning decision-making. The 

growing usage of machine learning solutions aims to 

integrate many current of machine learning techniques to 

create a full orchestration pipeline, which includes resource 

provisioning and multi-dimensional behavior modelling, in 

order to increase the accuracy of prediction as well as the 

efficiency of computing. The expansion of different cloud 

infrastructures and application designs is additionally 

facilitated by the advancement of machine learning models. 

The objectives and matrices for each of these algorithms are 

listed in Tables 6 and 7. 

 

 

 

 

 
TABLE VI 

CONTAINER ORCHESTRATION OBJECTIVES BASED ON ML- APPROACH 

 
Objective performance 

analysis 

dependency 

analysis 

scaling scheduling estimate 

task 
arrival 

rates 

forecast 

resource 
utilization 

forecast 

resource 
needs 

estimate 

request 
arrival 

rates 

anomaly 

detection 

computation 

offloading 

Ref 

CNN + BT √ √ √  √      [53] 

K-means √  √ √  √   √ √ [54] 

Model-

based RL 

√  √ √  √   √ √ [55] 

[56] 

[57] 

GRU √  √ √  √   √ √ [58] 

[59] 

LASSO √  √ √  √   √ √ [57] 

DT √  √ √  √   √ √ [60] 

PR √  √ √  √   √ √ [54] 

DRL √  √ √  √   √ √ [61] 

[62] 

Q-Learning  √ √    √  √  [63] 

SARSA √   √    √ √  [64] 

MDP + 

Q-Learning 

√  √ √  √   √ √ [65] 

[66] 

MDP + 

SARSA 

√ √ √        [55] 

SVM √   √    √ √  [57] 
[67] 

Actor-

Critic 

√  √ √  √   √ √ [62] 

SVM + 

Actor-

Critic 

√ √ √        [57] 

[62] 

LSTM  √ √    √  √  [68] 

[59] 

BI-LSTM √   √    √ √  [69] 

BI-LSTM 
+ SARSA 

√ √ √  √      [70] 
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Gradient 
Boosting 

Regression 

 √ √    √  √  [71] 

ANN √   √    √ √  [72] 

[62] 
[67] 

NN      √     [73] 

[59] 

NB √   √    √ √  [67] 

ARIMA      √     [74] 

SVR √   √    √ √  [72] 

RF √   √    √ √  [67] 

LR √   √    √ √  [72] 

 
TABLE VII 

 CONTAINER ORCHESTRATION MATRIX BASED ON ML- APPROACH 

 
Matrix resource 

demands 
application 
latency 

propagation 
timeouts 

image’s size of 
the container 

power 
usage 

duplicate 
sizes 

time of 
response 

request 
arrival 

rate 

request 
type 

package 
loss rate 

task 
completion 

time 

Ref 

CNN + BT √ √          [53] 

K-means √  √ √ √ √ √     [54] 

Model-
based RL 

√ 

 
 √ √ √ √ √     [55] 

[56] 

[57] 

GRU √  √ √ √ √ √     [58] 
[59] 

LASSO √  √ √ √ √ √     [57] 

DT √  √ √ √ √ √     [60] 

PR √  √ √ √ √ √     [54] 

DRL √  √ √ √ √ √     [61] 

[62] 

Q-Learning √           [63] 

SARSA √         √ √ [64] 

MDP + 

Q-Learning 

√  √ √ √ √ √     [65] 

[66] 

MDP + 

SARSA 

√     √ √ √ √   [55] 

SVM √         √ √ [57] 
[67] 

Actor-

Critic 

√  √ √ √ √ √     [62] 

SVM + 

Actor-

Critic 

√     √ √ √ √   [57] 

[62] 

LSTM √           [68] 

[59] 

BI-LSTM √         √ √ [69] 

BI-LSTM 

+ SARSA 

√ √          [70] 

Gradient 

Boosting 

Regression 

√           [71] 

ANN √         √ √ [72] 
[62] 

[67] 

NN √           [73] 
[59] 

NB √         √ √ [67] 

ARIMA √           [74] 

SVR √         √ √ [72] 

RF √         √ √ [67] 

LR √         √ √ [72] 
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In addition to the earlier investigation, there have been 

further studies that, without concentrating on the algorithms 

employed, explored MLOps and DevOps with container-

based applications. These studies can be summarized as 

follows. 

A program called Pangea was invented by Raúl Miñón et al. 

to automatically provide suitable execution settings for the 

deployment of analytic pipelines. Pipelines for analysis are 

divided into multiple phases, allowing for the optimal usage 

of software and hardware resources while minimizing 

latency, whether they are executed in an on-premises, cloud, 

edge, or fog environment. Pangea aims to accomplish three 

distinct objectives: firstly, building the necessary 

infrastructure in case it doesn't already exist; secondly, 

supplying it with the elements required to execute the 

pipelines (such as configuring the executable code, 

installing dependencies, and setting up every host software 

and operating system); thirdly, implementing the pipelines 

[75]. Raúl presented a sophisticated tool that requires 

extensive planning and development. The tool's initial 

iteration is developed enough to show off some of its 

potential benefits, but before it can be applied in additional 

scenarios, further use cases, technology, and connection 

compatibility need to be added. Since Pangea is not made to 

allow the definition and deployment of analytical pipelines 

at the training step, the web client needs to be upgraded to 

help with user, pipeline, and infrastructure management. 

Furthermore, Pangea does not provide infrastructure 

behavior and pipeline monitoring. 

A survey of the literature on MLOps was presented by 

Matteo Testi et al. to highlight the current challenges 

associated with creating as well as maintaining a production-

level machine learning system. The literature review 

indicated that there is still a lack of discussion in academics 

regarding the use of MLOps in the workplace and the 

integration of DevOps principles with machine learning. 

Organizations attempting to implement a machine learning 

approach in a complete use case will also need to conduct 

experimental work to test the ML pipeline, going through 

each step and demonstrating what happens if key phases are 

ignored [33]. 

Sergio Moreschini et al. provided a more comprehensive 

example of MLOps by incorporating the stages of ML 

development into the well-established DevOps procedures. 

The study proposed an MLOps pipeline that focused on the 

responsibilities and duality of software engineers and 

machine learning developers [76]. Sergio's vision 

accelerated the introduction of machine learning software, 

creating a requirement for ML developers to work 

concurrently with software developers and creating two 

additional loops for the ML and software domains. 

The work of Pinchen Cui concentrated on securing 

containerized applications through secure monitoring. 

Better application behavior simulation and wider attack 

coverage using an expanded feature area are required [77]. 

Pinchen's work has not been subjected to an online 

assessment. Enhancing the capabilities of the security 

monitoring target is necessary to allow the framework to 

decide what needs to be monitored automatically in an 

unsupervised manner. Furthermore, the framework did not 

enable the scaling of a dataset featuring various application 

architectures, including distributed monitoring with Docker 

Swarm and applications using multi-containers, in which a 

service is made up of multiple containers. 

Rule-based security monitoring should be integrated with 

containerized environments, according to Holger Gantikow 

et al. The method's suitability is examined for two things: 

firstly,  a range of undesired behaviors that could indicate 

misuse or assaults on workloads operating inside of 

containers; and secondly,  incorrect setups as well as efforts 

to weaken isolation measures and enhance privileges at the 

level of container runtime [34]. As shared tasks engage in 

significant interactions beyond host boundaries, security 

monitoring of distributed workloads is not covered in 

Holger’s work.  

  

IV. CONCLUSION 

More than ever, machine learning systems are being 

developed and only a tiny percentage of these proofs of 

concepts, meanwhile, are implemented and put into 

production. Furthermore, the academic community has 

concentrated a great deal on developing machine learning 

models but not nearly as much on applying sophisticated 

real-world applications of machine learning. In reality, 

data specialists still do the majority of ML operations 

manually. The Machine Learning Operations (MLOps) 

methodology aims to address these problems. To put it 

simple, ML model combine data and code but MLOps is 

about combine ML model (Algorithms, Weights and 

Hyperparameters) and software (Scripts, Libraries, 

Infrastructure and DevOps). By another word, MLOps 

integrates with SDLC (Source control repositories, etc.) for 

code and integrates with DevOps for Automation, Scale 

and Collaboration.  

The machine learning solution's efficiency and 

effectiveness are determined only by its features and 

nature. The research took a substantial amount of time and 

effort before being able to obtain the necessary information 

to find answers to various opened areas, especially MLOps 

monitoring and constraints, which leads to believe that the 

documentation is insufficiently detailed, particularly for 

those who are unfamiliar with the technology. The goal of 

this initiative is to clarify MLOps by examining the 

literature and instruments already in use in order to derive 

a comprehensive definition of MLOps and its associated 

ideas and procedures such as containers. 

The findings illustrate that even there are many benefits of 

using containers, there are a few drawbacks that can be 
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difficult for companies whose IT architecture and 

procedures demand formal approaches and 

standardization. Because the concept of containers is 

linked to automation in various fields and DevOps, which 

means the process automating of generating containers and 

then deploying them to the platform as a service 

environment like RedHat OpenShift, Amazon Web 

Services or IBM BlueMix by extending current 

architecture modelling standards, this introduce one of the 

many challenges in maintaining machine learning systems 

and DevOps as well which is Monitoring.  

Moreover, not many new machine learning models have 

been adopted by the container orchestration in the past few 

years and the monitoring system for the container service 

needs to be examined very specifically for every container 

and its entirety and to understand the relationships that 

exist between the containers which will leads by its role to 

the areas of monitoring the ML model by utilizing MLOps 

to automatically monitor the ML model's characteristics 

and features and identify what kinds of issues MLOps 

techniques could be most appropriate for; in order to 

increase the frequency of software deployments have a big 

challenge. 
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