
Informatics Bulletin, Faculty of Computers and Artificial Intelligence, Helwan University

Published Online Vol 7 Issue 1, January 2025

(https://fcihib.journals.ekb.eg)

The Impact of using MLOps and DevOps on

Container based Applications: A Survey

Zeinab Shoieb Elgamal1, Laila Elfangary2, Hanan Fahmy 3
1Information System Dept., Faculty of Computers and Artificial Intelligence, Helwan University, Egypt

zeinab_elgamal@fci.helwan.edu.eg, lailaelfangary@fci.helwan.edu.eg, hanan.fahmy@fci.helwan.edu.eg

Abstract— Developing and implementing the machine learning

applications as quickly as feasible is the aim of commercial

machine learning (ML) initiatives. A lot of machine learning

trials, however, fall short of their requirements and

expectations because automating and operationalizing the

machine learning systems is so challenging. MLOps, a model

for machine learning operations, deals with this. There are

several components to MLOps, including development culture,

collections of concepts, and best practices. The consequences of

MLOps for academics and professionals are, however, yet

unknown. As a result, this study provides a detailed description

of the underlying concepts, elements, as well architecture, to aid

in the development of usable software based on ML methods

that can make MLOps models simple to monitor, integrate, and

scale securely to help save maintenance costs and improve the

number of software deployments. The study draws attention to

the remaining problems in the area before it is done.

Index Terms— CI/CD, DevOps, MLOps, Container.

I. INTRODUCTION

Machine learning operations (MLOps), the process of

deploying and continuously integrating (CI/CD), machine

learning-enabled systems, are receiving more attention due to

the ML applications' explosive rise in popularity [1]. The

process of automation for a typical CI/CD pipelines must be

expanded to include monitoring retraining of the model during

and after the production deployment because the modifications

might alter not just the code but additionally the ML model

attributes as well as the data itself [1]. Furthermore, the

reusable, modular, and maybe shareable components are

necessary for machine learning pipelines to facilitate developer

repeatability by separating the deployment machine or

environment of the execution time for a specific code, these

components should preferably be containerized [2].

ML has become a vital element for unlocking data's capabilities

and facilitating more innovative, effective, along with

sustainable business practices [3]. Many ML applications,

however, have not been as successful as anticipated in the real

world. This is not unexpected from a research standpoint

because the ML community has concentrated mostly on

developing ML models rather than developing ML products

that are ready for production and facilitating the essential

coordination of the resulting ML systems [3].

In addition, these applications began to generate and store

huge quantities of data as a result of their activities. These

new advances necessitate real-time application operation

monitoring [4]. If MLOps model selection and training are

not regularly and consistently observed, The market worth of

applications may decrease and organizations may suffer from

a financial loss, but in the worst case scenario, they could

harm their reputation [5].

The recently developed field of machine learning engineering

called "Machine Learning Operations" (MLOps) is discussed

in this research in order to effectively handle the issue of

creating and monitoring effective ML. The study adopts an

all-encompassing viewpoint to explain the related

components, principles, responsibilities, and architectures.

While recent studies cover a variety of specific MLOps

topics, an absence of a comprehensive conception and

explanation for the ML systems monitor appears. Various

ways to interpret the phrase "MLOps" may result in

misconceptions, which may result in setup errors for the

entirety of the machine learning application.

The study's main contribution is as follows:

1- Creates a shared understanding of the Container,

DevOps and MLOps phrases and associated ideas.

2- Elucidating the significance of MLOps principles,

presenting and highlighting the key elements to

successfully apply MLOps.

3- Highlights a variety of studies on machine learning-

based container orchestration techniques.

4- Provides clear recommendations for MLOps practices

and makes it possible to make predictions that are more

accurate in real-world environments.

5- The research concludes by discussing the MLOps'

potential future directions.

The remaining research is structured as follows. Sect. 2,

Illustrates the necessary definitions. Sect. 3, presents the

relevant research in the topic. Sect. 4, concludes the work

with a short summary.

mailto:zeinab_elgamal@fci.helwan.edu.eg

Informatics Bulletin, Helwan University, Vol 7 Issue 1, January 2025

II. BACKGROUND

An overview of the fundamentals of DevOps, virtual

machines, containers, microservices, Machine Learning and

MLOps as a crucial stage in the software development life

cycle is intended to be provided in this section.

A. DEVOPS

 Software engineering has historically employed a variety

of software process models and development techniques,

including Waterfall and Agile. These approaches share the

same goal of producing software applications that are ready

for production [3]. The old waterfall methodology has been

replaced by DevOps in software development teams

recently because the traditional life cycle is insufficient for

dynamic projects, which are necessary for the process for

building Machine Learning (ML) applications to shorten the

time that developers spend engaging in daily tasks [6], thus;

ML pipeline is established in collaboration with DevOps

with the objective of automating the ML lifecycle. Figure 1.

Represents the differences between waterfall and DevOps

and define the ML pipeline stages [7].

Figure 1. Distinction between the manual machine learning pipeline,

DevOps, and Waterfall software development life cycles [7].

The recent software deployment methodology named as

"DevOps" blends IT operations (Ops) with software

development (Dev) [8]. Software applications can be

automated, continuously integrated, continuously deployed,

monitored, and teamwork grows with the aid of DevOps [9]

[10]. The two primary DevOps techniques are Continuous

Integration and Continuous Delivery in addition to the

Continuous Testing, so DevOps pipeline, commonly

referred to the CI/CD pipeline [7] [9] [11].

Software development with an emphasis on automating the

development and combining of code from several

developers is known as Continuous Integration, or CI. In

this method, developers are asked to merge their changes on

code more frequently to the main repository in order to

shorten development cycles and enhance quality. This

procedure's primary elements include automated software

development, testing procedures, and version control

systems [7] [12]. The main objective of Continuous

Delivery (CD), which seeks to deliver newly created

features to the end user in the most expedient manner, is to

build the software in a way that is continuously in a state

suitable for production so that code modifications may be

provided on request swiftly and safely [7] [13] [14] .

Continuous Testing, or CT, is the practice of running

automated tests as component of the pipeline for software

delivery with the goal of receiving prompt feedback on the

business concerns associated with an upcoming software

release [15].

CDE, or Continuous Deployment, is a unique method. A

continuous deployment approach is used to automatically

release each software change to production. A majority of

companies have procedures in place that require external

clearance before sharing information with users. While

continuous deployment is optional and can be avoided,

continuous delivery is often deemed mandatory [7] [12].

Continuous Monitoring is an automated procedure to

evaluate a deployed product's performance in real time

against business requirements [10] [16]. Figure 2.

Represents the different between each software delivery

pipelines [10].

Figure 2. Software Delivery pipelines [10].

There are numerous problems associated with the DevOps

methodology that the organization must overcome during

the DevOps transformation phase. Table 1, lists these

challenges.

TABLE I

DEVOPS CHALLENGES [10]

Qualified Participants It can be difficult to integrate DevOps
capable individuals into a team.

Management

Getting management support for DevOps

procedures is difficult.

Build process

The DevOps build process is becoming
more sophisticated.

Legacy system

Making DevOps and legacy systems work

together.

Security

Realizing pipeline security in the DevOps
development process.

Expert guidance Locating skilled professionals to assist with

DevOps operations.

Persistent cultural
practices

Shifting established corporate culture to
facilitate the implementation of DevOps.

Tool utilization Integrate with a huge number of tools.

Process and mentality

adaptation

Modifying some organization procedures

and mentality in order to implement
DevOps successfully.

Cooperation Establishing cooperation between

Operations and Development.

Monitoring The DevOps monitoring process is
becoming more essential at every step on

the pipeline.

Expenses Determining the hidden expenses of
adopting DevOps

Informatics Bulletin, Helwan University, Vol 7 Issue 1, January 2025

B. CONTAINERS AND DEVOPS

Before Docker containers were invented, large,

technologically-dependent businesses like Walmart and

Chase Bank employed servers and added a lot of them, which

resulted in over-allocation, to manage the growing volume

of customer requests. The drawback of over-allocating

servers was that it was very costly and that if it didn't scale

effectively, the servers would burn out and the company

would fall apart. Then, a concept known as virtualization

emerged, which made it possible to run multiple operating

systems on the same host. This was revolutionary for

industries because it allowed any application to be run in

isolation on the same server and infrastructure. It was like

having a completely different computer running on the same

machine [17].

Containerization is a modern paradigm that is characterized

as an operating system (OS) virtualization technique that

permits programs to run in distinct user spaces while sharing

a single OS. Simply, containers are a considerably fewer

resource and time intensive virtualization principle [17] [18]

[19]. For systems that enable the temporary, on demand

execution of computing processes, like Function As A

Service (FaaS) platform, Containerization is a popular

technique [20] [21]. For cloud-native platforms, container

design is similar to object design in object-oriented (OO)

software systems in that it allows automated orchestration

and agile DevOps methods: Every container will be assigned

a particular task to complete effectively [22] [23]. The

"Single Concern Principle" has been used to describe how

cloud-native containers can grow dynamically and replace,

re-use, and update seamlessly by focusing on a single issue,

which is equivalent to the single responsibility concept in

OO-languages [23] [24].

Dockerizing aims to fully execute the DevOps paradigm

[25]. Docker enables the hosting and execution of any kind

of software, including packaged, in-house, custom-built,

databases, platforms, middleware, and applications.

Furthermore, it is now much easier to design, publish,

deliver, and deploy software quickly and effectively [26].

Moreover, dockerizing provides an easy way to limit the

amount of resources that the containers can utilize [27], and

ensures that application stacks running on the same Docker

layer are isolated from one another [28].

Organizing the configuration interface and optimizing

machine setup are two benefits of Docker. As CI/CD

establishes the relationship between Docker and DevOps,

Docker can be utilized to improve the company's DevOps

operations and maintains consistency between the

production and testing environments [17]. The development

process is improved by the usage of DevOps and container

deployment together [29]. With containers, developers may

specify exactly how to build a software environment that

works for a certain piece of code. This covers environment

variables, system libraries, third-party libraries, the basic

operating system type, as well as the process of compiling a

software application [29].

Figure 3 illustrates how Docker containers can operate on

both tiny and large devices, with an average speed difference

of 26x between them and virtual machines (VMs) [18] [30].

Figure 3. Virtual machines vs. Containers [18]

Table 2, provides an overview of the advantages of using

containers for software deployment compared to virtual

machines.

TABLE II

 ADVANTAGES OF VIRTUAL MACHINES VS CONTAINERS [19]

Comparative element VM Container

Operating System Guest OS Shared-Host OS

Starting up time Take a while to boot
up

Extremely quickly

Standardization OS-specific Depending on the

application

Movability Less portable More portable

Server’s Demand Additional servers
are required.

Fewer servers are
needed.

Security Any operating

system that operates
in a VM has the

ability to secure the

date of the user.
Security is also

dependent on the

hypervisor.

Because the kernel is

shared by all of the
apps, security may

suffer. Therefore, it

doesn't have any
security measures.

Low redundancy More redundant
information

Few overlapping
details

Hardware access Absence of direct

hardware access

Direct hardware

access

Distribution of

Resources

Significant number

of resources needed

Less resources

required

Memory requirement High memory needs Less memory

Sharing files and

library

Isn’t possible Is possible by using

Linux commands

Using a virtual machine or a container is an option available

to DevOps experts throughout the software development

process' deployment phase. Virtual machines are more

dependable and safer since they enable total resource

isolation and high adaptability. They need more resources

than containers, though, and are heavier. On the other hand,

applications and their dependencies are the main emphasis of

containers. They are simple to deploy and manage and just

require a single kernel to operate. It is also possible to deploy

numerous containers on a single host or virtual machine; but,

in the event that the host goes down, there is a greater chance

that all of the containers would fail as well. Consequently,

the decision between virtual machines and containers is

based on the particular requirements of the project, including

the degree of security, the necessary stability and the

availability of resources.

Informatics Bulletin, Helwan University, Vol 7 Issue 1, January 2025

C. MICROSERVICES

Applications that have been divided into their essential

functions (or activities) are called Microservices. Within a

container (like a Docker container), each activity functions

as a separate "service" and uses the network to interact with

other containers [31].

Compared to conventional, monolithic programs,

microservices have a number of benefits, such as great

flexibility, extremely good resource management, and

independent updating cycles [31]. Since these monolithic

applications adhere to the paradigm of “all in one” in which

every functional components are produced followed by

configuration to precisely single deployment entity,

specifically, single container, the monolithic design is only

appropriate for tiny scale systems with straightforward inner

structures [32]. If "Microservices" architecture, as opposed

to monolithic design, had been employed during the project

development phase, it would have assisted in monitoring

ML initiatives. It is recommended to divide single-module

systems across several connected and independent

microservice modules using Microservice Architecture

(MSA) [33] [34].

D. MACHINE LEARNING

Among the newest and most widely adopted

technologies of the fourth wave of industrialization is

machine learning, or ML. It gives systems the capacity to

automatically grow and learn from the lessons learned out of

having to be manually designed [35]. Building computer

programs with data-driven learning capabilities is the aim of

ML. The knowledge that has been acquired by a machine

learning system must be stored in a knowledge

representation structure known as an inductive hypothesis,

which is usually in the form of a model. Figure 4, presents a

general approach to machine learning [36].

Figure 4. ML Approach [36].

Machine learning models are frequently applied to voice and

facial recognition applications. But creating and utilizing

machine learning (ML) techniques is more intricate and

challenging than assessing and validating models using

normal methodologies [37].

There are four phases for the machine learning deployment,

and there are various factors including law, ethics, security,

and end user trust that can affect one or more of these phases.

These phases include: Model verification, which includes

formal and test-based verification, requirements encoding;

Model learning, which includes selection and training the

model and hyperparameter selection; Model deployment,

which includes monitoring, updating, and integrating; and

data management, which includes gathering, preparing,

expanding, and interpreting data. The difficulties and

concerns for every phase at each step during ML deployment

are shown in Table 3 [38].

TABLE III

ML DEPLOYMENT CONSIDERATIONS AND ISSUES [38]

Deployment Stage Deployment Step Considerations and Issues

Data Management Data collection Data finding.

Data preprocessing
Data fragmentation.

Data cleansing.

Data expansion
Classifying the substantial

amounts of data.

Expertise availability.

Inadequate data with a

significant variance.

Data interpretation Profiles of data.

Model learning Model selection
Model challenges.

Limited resources.
Model's interpretability.

Training
Computational expenses.

Environmental effect.
Privacy conscious

instruction.

Hyper-parameter

selection

Resource needs.

Unknown search
capability.

Hardware enhancement.

Model verification Requirements

encoding

Performance indicators.
Business driven indicators.

Formal verification
Standard structures.

Test-based

verification

Testing by simulation.

Data validation procedures.

Model deployment Integration
Operational support.

Reusing models and code.
Software engineering anti-

patterns.

Varied team dynamics.

Monitoring
Continuous feedback.
Identification of outliers.

Tools for custom design.

Updating
Ideas drifting.
Continuous delivery.

Intersecting

elements

Ethics
Amplification of opinions.

Accountability and equity.

Authorship.

Decision making.

Law
National laws.

Following existing rules.
Concentrate on technical

fix.

End users’ trust
End user participation.

User experience.

Describe ability record.

Security
Data tainting.

Model stealing.
Model reversal.

E. CONTAINERS AND MLOPS

DevOps is expanded into the machine learning domain

by MLOps [39]. MLOps relates to the complete set of best

practices and procedures from designing the training data to

the end deployment lifecycle [8]. To put it simple, MLOps

Informatics Bulletin, Helwan University, Vol 7 Issue 1, January 2025

is DevOps's AI equivalent [8]. Figure 5. Shows the

integration of MLOps [6] [37] and Figure 6. Shows An

overview of the MLOps Flow [37].

Figure 5. MLOps Integration [6][37].

Figure 6. Overview of the MLOps Flow [37].

Like DevOps, MLOps sets a major emphasis on automation

while maintaining focus on each step of the ML pipeline

through the use of independent, modular components

designed to prevent implementation problems and

automatically optimize models that may be utilized by other

configurations [40], by involve containerization and

dockerizing in MLOps phases [6]. Figure 7. Shows the

phases of MLOps [37].

Figure 7. MLOps Phases [37].

MLOps has certain implementation issues. Distinct

operational, machine learning system, and organizational

challenges have been identified as these outstanding issues.

1) Distinct Operational Challenges

Because of the several stacks of hardware and software

components and their interdependencies, machine learning

is hard to operate manually. For this reason, reliable

automation is needed [41] [42]. Furthermore, skill

retraining is required because to an ongoing entry of new

data. That being said, this recurring task calls for a high

degree of automation [43]. Because of these recurring

processes produce a large number of artworks, efficient

governance is required [44] [45] [46]. In addition, versioning

the code, model, and data is necessary to guarantee

reproducibility and reliability [44] [3]. It may be difficult

to handle a possible support request due to the intricacy of

the situation (e.g., by identifying the real cause) [47],

Therefore, in order to support in making informed

judgements, it is imperative to monitor each step and collect

as much information as possible.

2) Machine Learning System Challenges

Designing MLOps systems for demand fluctuations

may be challenging, particularly in terms of ML training

and monitoring protocols [41]. This may be the result of

extensive and irregular data [48], thus, it is challenging to

forecast with precision when the essential infrastructure

components (CPU, RAM, and GPU) will be required, along

with the capacity of the containers to scale requires a high

degree of flexibility [41] [47].

3) Organizational Challenges

In organizational environments, data science practice

mentality and culture are often problematic [49]. The study's

conclusions imply that a shift in mindset distant from model-

driven ML and towards the system-oriented field is

necessary to effectively develop, implement, and operate

machine learning systems. This can be accomplished by

focusing more on the data-related procedures that take place

before the machine learning model is developed. When

developing ML solutions, roles specifically involved in these

tasks should have a system-focused view. MLOps need to

possess a wide range of specialized skills and duties.

primarily in the fields of architecture, data engineering,

machine learning, and DevOps engineering, as there aren't

enough highly qualified professionals to occupy these roles

[44] [50] [51]. MLOps is often left out of data science

classes, therefore this is significant to the kind of training that

workers of the future will require [41]. Apart from creating

models, students also need to become proficient in the

elements and methods required to build machine learning

systems.

MLOps must therefore take a cooperative approach. This

is difficult since teams typically work in conditions that are

more solitary than collaborative and communication is

made much more difficult by specialized terminologies

and varying knowledge levels.

Informatics Bulletin, Helwan University, Vol 7 Issue 1, January 2025

III. STRATEGIES AND APPROACHES

The methodologies and approaches used by recent studies to

handle the subjects of containers and MLOps—with an

emphasis primarily on the monitoring phase—will be the

subject of the following section. Additionally, researches

using MLOps algorithms and the classification of the

majority ML methods employed in orchestration of

containers domain will be presented in this part,

demonstrating their efficacy in application analysis and

monitoring.

A. STRATEGIES

The results of the reviewed studies show that there are four

primary categories for monitoring the containerized

environments: Technical Characteristics, Applicability,

Effect and Evaluation.

There are several subcategories within each of these main

categories that offer more detailed information about the

monitoring methods. The strategies for monitoring

containerized environments categorized by category are

displayed in Table 4.

TABLE IV

 MONITORING STRATEGIES FOR CONTAINERIZED ENVIRONMENT.

Category Sub- Category Summary/Example

Technical Characteristics

Monitored object Containerized apps, container engine, and/or host OS.

Intrusiveness Internal, external or both.

Required resources Hardware, software or both.

Detection strategy Anomaly or misuse based.

Analysis strategy ML and rule-based, statistical, rule-driven analysis, filtration and confirmation, and remote verification.

Analysis duration Instantaneous or offline.

Analysis parameters Configuration files, an app, system invocations, or traffic or sensor data, or.

Measures Resource usage for CPU, memory or network, communications with the operating system.

Analysis process Detailed steps for analysis.

Response Logging, setting up alarms, or thwarting attacks.

Application Domain IOT, cyber–physical, cloud or high-performance computing, general-purpose.

Software category Kubernetes, Linux or Docker.

Effect Specifically aimed

threats

Spoofing, manipulation, rejection, data exposure, denial of service, and privilege elevation.

Directed assaults Malware, unapproved entry, kernel exploits, and changes of binaries.

Certain errors Network latency, memory leaks, and log explosions.

Pros and cons Advantage: enhanced verification.

Disadvantage: inaccurate anomaly prediction.

Evaluation - Metrics for evaluation: recall, accuracy, detection rate, and performance.

1) Technical Characteristics

Explains the essential actions, materials, and analysis

findings, as well as the types of analysis and detection that

the monitoring approach can apply. The following are ten

subcategories within this category.

• Monitored object

The item under method monitoring in the container-based

virtualization environment. The containerized apps, the

container engine, and/or the host operating system (OS) can

all be this.

• Intrusiveness

This describes whether the monitoring of the

environment is conducted externally or inside.

• Required resources

The materials needed to run the monitoring method.

These resources may consist of hardware, software, or both.

• Detection technique

In order to differentiate among two distinct approaches

of incursion detection: anomaly and misuse-based.

• Analysis strategy

This is the approach used by the method for keeping an

eye on and evaluating the activities occurring within the

virtualized environment. ML-based, rule-based, statistical,

rule-driven analysis, filtration and confirmation, and remote

verification are some examples of analysis methodologies.

• Analysis time

Indicates whether offline or real-time mode monitoring is

being done.

• Analysis input

The resources used as an input by the technique to do the

analysis. These resources may include, for example, a series

of system calls made in a predetermined duration, the possible

app, traffic and sensor data, or configuration information.

Informatics Bulletin, Helwan University, Vol 7 Issue 1, January 2025

• Measures

Measurements that were gathered, such as how

frequently the OS was used and how much memory, CPU, and

network was used.

• Analysis process

This is a thorough, step-by-step explanation of the

analysis process.

• Response

What happens when an abnormality or violation is found

by the monitoring mechanism. This can involve things like

setting off an alarm, documenting information, or thwarting

an attack. Furthermore, there are two types of monitoring:

active and passive. The first type is event-driven, meaning it

tracks the occurrence of events rather than being based on

time. The second type is reliant on periodic status

examination polling and is therefore capable of transitory

attacks, or attacks that take place in between polling. Active

monitoring, however, is subjected to attacks that do not fall

inside the defined occurrences and hence evade detection

systems.

2) Applicability

Clarifies explains the areas where the monitoring methods

may be applied. The following are two subcategories within

this category.

• Domain

The area may fall within the categories of IoT, cyber-

physical systems, general purpose, cloud or high-

performance computing.

• Software category

This indicates the kind of software that can be used with

the monitoring technique, such as Kubernetes, Docker, and

Linux containers.

3) Effect

Outlines the results and the objective of the

monitoring methods. The following are four subcategories

within this category.

• Expected threats

The STRIDE term or the security risks that the

monitoring method focuses on. Spoofing, manipulation,

rejection, data exposure, denial of service, or privilege

elevation are some examples of the dangers.

• Expected attacks

These are the specific security attacks that the

monitoring method is intended to stop. Malware,

unauthorized entry, kernel exploits, traffic congestion on the

network as well binary alteration are a few examples of the

attack types.

• Expected faults

The errors that the method aims to correct, such as

memory leaks, CPU overuse, delay in networks, and log

explosions.

• Benefits and drawbacks

An explanation for the monitoring approach's benefits

(like improved verification) and drawbacks (like erroneous

anomaly prediction).

4) Evaluation

Explains the kind of assessment that is carried out using

the monitoring approach; it may involve testing, case studies,

or experiments. It also covers the evaluation process,

evaluation results, and evaluation metrics like performance.

B. APPROACHES

VM orchestration has been implemented using machine

learning (ML). For instance, various publications have

addressed early attempts to auto-configure virtual machines

(VMs) using reinforcement learning (RL) methods.

Container orchestrators in conventional cloud computing

platforms are typically built with heuristic policies that

ignore the variety of workload circumstances and demands

for quality of service (QoS).
With the goal of automating deployment of application as

well enabling flexible setup adjustments during runtime of a

wide variety of workload types, orchestration of the

container gives cloud service suppliers the authority to

ascertain the configuration, deployment, and maintenance

procedures for containerized applications in cloud-based

computing environments [52] [32]. A ML frame work of

container orchestration is shown in Figure 8 [32].

The following is the primary shortcomings of container

orchestration.

1) Metrics level

The existing container orchestration approaches mostly

focus on assessing infrastructure-level metrics, with little

attention paid to application-level metrics and particular QoS

needs. When it comes to tasks like task completion times,

communication delays, and delays in task deployment,

containerized workloads could have more stringent time

limitations than standard cloud workloads.

2) Policies

The majority of the approaches are small-scale, static

heuristic procedures that are configured offline based on

specific workload scenarios. For example, threshold-based

auto scaling schemes may only be appropriate for workload

management within a pre-specified range. These policies are

unable to manage workloads that are extremely dynamic and

require programs to be scaled in or out at runtime in

Informatics Bulletin, Helwan University, Vol 7 Issue 1, January 2025

accordance with predetermined behavior patterns.

3) Performance

When the system scales up, heuristic techniques may

perform significantly worse. Algorithms for bin packing,

such as least fit and best fit, are commonly employed to

address issues related to resource allocation and task

scheduling. On the other hand, these techniques could not

function well in large-scale computing clusters when job

scheduling delays are considerable.

4) Resources

Typically, co-located apps disregard resource contention

and performance interruption. Application performance

degradation, increased maintenance expenses along with the

breaches of service-level agreements (SLAs) could result

from co-located apps competing for shared resources.

5) Dependency structures

The machine learning models are very simple for

containerized workload scenarios, although they are only

useful for conventional cloud apps; When resource

provisioning, the dependencies among the components of a

containerized application are not considered. For example,

as compared to typical monolithic programs, Microservice

apps that are containerized are more lightweight and

decentralized. Within an application, various microservice

units are connected internally. The dependencies of the

majority of other microservices are essential elements of a

microservice architecture and are more prone to experience

the breaches of service level objectives (SLO) because of

increased the requirements for resources as well as

communication expenses.

Figure 8. A high-level ML container orchestration framework [32].

As per the studied researches the taxonomy of container

orchestration based on machine learning can be classified

into five main classifications. Summary of the primary

categories together with their corresponding subcategories

are displayed in Table 5.

TABLE V

 CONTAINER ORCHESTRATION CATEGORIES

Category Sub-Category Summary

Application Architecture Monolithic Adhere to an all-in-one design in which every functional module is created and set up inside of a

single deployment unit, or container.

Microservices For various functionalities and corporate goals, every microservice component can be installed,

deployed as well run separately.

Serverless A paradigm for event-driven applications that performs stateless computing operations is

defined by the serverless architecture. Functions are often brief segments of code with particular

configurations and constrained execution times that are hosted in function containers and are

intended to carry out certain user-defined capabilities.

Infrastructre Single cloud Constructed using resources from a single cloud service provider, either public or private, to host

and offer services for every application.

Multi cloud Incorporates a variety of cloud services, such as private, public, or a combination of both.

Numerous factors, including resource configurations, pricing, network latency, and geographic

locations, might vary throughout cloud service providers, providing greater options for

application deployment optimization.

Hybrid cloud Is made up of several cloud components, such as fog, edge, or private clouds. Deploying all of

the data and apps to public or private clouds isn't always efficient in this approach, however at

fog or edge devices, the hybrid cloud can allow data and apps to be installed and processed.

Optimization objectives Resource efficiency Energy and cost efficiency measures for resource utilization at the infrastructure level.

SLA assurance Auto scaling is typically used to respond to the constantly shifting dynamic and unpredictable

demands by automating application maintenance with SLA assurance.

Behavior Modeling and Prediction Performance

analysis

Identifies the relationship between application-level or infrastructure-level statistics to represent

the performance of the application and the system statuses.

Informatics Bulletin, Helwan University, Vol 7 Issue 1, January 2025

Dependency

analysis

Examines the inherent dependencies between containerized application components.

Comprehending the distribution of workload and pressure among application components in

order to accurately configure resources.

Anomaly detection Helps prevent SLA breaches and system crashes by classifying and identifying abnormal system

behaviors, such as security risks, performance degradation, workload spikes, instance failure and

resource overloading.

Workload

characteristics

By assigning resources precisely in response to incoming workloads, to improve the caliber of

resource provisioning choices, a comprehension of workload patterns is necessary.

Resource Provisioning Scheduling The overall performance of the application and the efficiency of its resources are directly

impacted by the quality of scheduling decisions.

Scaling The process of adjusting the size of compute nodes or containerized applications in response to

possible workload variations. This process makes sure that the applications are supplied with

sufficient resources to reduce the likelihood of SLA breaches.

Migration Transferring a task or set of tasks from one node to another.

The studied researches, evaluating the studies that published

between 2016 and 2023, discussed a range of algorithms for

machine learning which have been used to container

orchestration, encompassing tasks such as workload

modelling and reinforcement learning decision-making. The

growing usage of machine learning solutions aims to

integrate many current of machine learning techniques to

create a full orchestration pipeline, which includes resource

provisioning and multi-dimensional behavior modelling, in

order to increase the accuracy of prediction as well as the

efficiency of computing. The expansion of different cloud

infrastructures and application designs is additionally

facilitated by the advancement of machine learning models.

The objectives and matrices for each of these algorithms are

listed in Tables 6 and 7.

TABLE VI

CONTAINER ORCHESTRATION OBJECTIVES BASED ON ML- APPROACH

Objective performance

analysis

dependency

analysis

scaling scheduling estimate

task
arrival

rates

forecast

resource
utilization

forecast

resource
needs

estimate

request
arrival

rates

anomaly

detection

computation

offloading

Ref

CNN + BT √ √ √ √ [53]

K-means √ √ √ √ √ √ [54]

Model-

based RL

√ √ √ √ √ √ [55]

[56]

[57]

GRU √ √ √ √ √ √ [58]

[59]

LASSO √ √ √ √ √ √ [57]

DT √ √ √ √ √ √ [60]

PR √ √ √ √ √ √ [54]

DRL √ √ √ √ √ √ [61]

[62]

Q-Learning √ √ √ √ [63]

SARSA √ √ √ √ [64]

MDP +

Q-Learning

√ √ √ √ √ √ [65]

[66]

MDP +

SARSA

√ √ √ [55]

SVM √ √ √ √ [57]
[67]

Actor-

Critic

√ √ √ √ √ √ [62]

SVM +

Actor-

Critic

√ √ √ [57]

[62]

LSTM √ √ √ √ [68]

[59]

BI-LSTM √ √ √ √ [69]

BI-LSTM
+ SARSA

√ √ √ √ [70]

Informatics Bulletin, Helwan University, Vol 7 Issue 1, January 2025

Gradient
Boosting

Regression

 √ √ √ √ [71]

ANN √ √ √ √ [72]

[62]
[67]

NN √ [73]

[59]

NB √ √ √ √ [67]

ARIMA √ [74]

SVR √ √ √ √ [72]

RF √ √ √ √ [67]

LR √ √ √ √ [72]

TABLE VII

 CONTAINER ORCHESTRATION MATRIX BASED ON ML- APPROACH

Matrix resource

demands
application
latency

propagation
timeouts

image’s size of
the container

power
usage

duplicate
sizes

time of
response

request
arrival

rate

request
type

package
loss rate

task
completion

time

Ref

CNN + BT √ √ [53]

K-means √ √ √ √ √ √ [54]

Model-
based RL

√

 √ √ √ √ √ [55]

[56]

[57]

GRU √ √ √ √ √ √ [58]
[59]

LASSO √ √ √ √ √ √ [57]

DT √ √ √ √ √ √ [60]

PR √ √ √ √ √ √ [54]

DRL √ √ √ √ √ √ [61]

[62]

Q-Learning √ [63]

SARSA √ √ √ [64]

MDP +

Q-Learning

√ √ √ √ √ √ [65]

[66]

MDP +

SARSA

√ √ √ √ √ [55]

SVM √ √ √ [57]
[67]

Actor-

Critic

√ √ √ √ √ √ [62]

SVM +

Actor-

Critic

√ √ √ √ √ [57]

[62]

LSTM √ [68]

[59]

BI-LSTM √ √ √ [69]

BI-LSTM

+ SARSA

√ √ [70]

Gradient

Boosting

Regression

√ [71]

ANN √ √ √ [72]
[62]

[67]

NN √ [73]
[59]

NB √ √ √ [67]

ARIMA √ [74]

SVR √ √ √ [72]

RF √ √ √ [67]

LR √ √ √ [72]

Informatics Bulletin, Helwan University, Vol 7 Issue 1, January 2025

In addition to the earlier investigation, there have been

further studies that, without concentrating on the algorithms

employed, explored MLOps and DevOps with container-

based applications. These studies can be summarized as

follows.

A program called Pangea was invented by Raúl Miñón et al.

to automatically provide suitable execution settings for the

deployment of analytic pipelines. Pipelines for analysis are

divided into multiple phases, allowing for the optimal usage

of software and hardware resources while minimizing

latency, whether they are executed in an on-premises, cloud,

edge, or fog environment. Pangea aims to accomplish three

distinct objectives: firstly, building the necessary

infrastructure in case it doesn't already exist; secondly,

supplying it with the elements required to execute the

pipelines (such as configuring the executable code,

installing dependencies, and setting up every host software

and operating system); thirdly, implementing the pipelines

[75]. Raúl presented a sophisticated tool that requires

extensive planning and development. The tool's initial

iteration is developed enough to show off some of its

potential benefits, but before it can be applied in additional

scenarios, further use cases, technology, and connection

compatibility need to be added. Since Pangea is not made to

allow the definition and deployment of analytical pipelines

at the training step, the web client needs to be upgraded to

help with user, pipeline, and infrastructure management.

Furthermore, Pangea does not provide infrastructure

behavior and pipeline monitoring.

A survey of the literature on MLOps was presented by

Matteo Testi et al. to highlight the current challenges

associated with creating as well as maintaining a production-

level machine learning system. The literature review

indicated that there is still a lack of discussion in academics

regarding the use of MLOps in the workplace and the

integration of DevOps principles with machine learning.

Organizations attempting to implement a machine learning

approach in a complete use case will also need to conduct

experimental work to test the ML pipeline, going through

each step and demonstrating what happens if key phases are

ignored [33].

Sergio Moreschini et al. provided a more comprehensive

example of MLOps by incorporating the stages of ML

development into the well-established DevOps procedures.

The study proposed an MLOps pipeline that focused on the

responsibilities and duality of software engineers and

machine learning developers [76]. Sergio's vision

accelerated the introduction of machine learning software,

creating a requirement for ML developers to work

concurrently with software developers and creating two

additional loops for the ML and software domains.

The work of Pinchen Cui concentrated on securing

containerized applications through secure monitoring.

Better application behavior simulation and wider attack

coverage using an expanded feature area are required [77].

Pinchen's work has not been subjected to an online

assessment. Enhancing the capabilities of the security

monitoring target is necessary to allow the framework to

decide what needs to be monitored automatically in an

unsupervised manner. Furthermore, the framework did not

enable the scaling of a dataset featuring various application

architectures, including distributed monitoring with Docker

Swarm and applications using multi-containers, in which a

service is made up of multiple containers.

Rule-based security monitoring should be integrated with

containerized environments, according to Holger Gantikow

et al. The method's suitability is examined for two things:

firstly, a range of undesired behaviors that could indicate

misuse or assaults on workloads operating inside of

containers; and secondly, incorrect setups as well as efforts

to weaken isolation measures and enhance privileges at the

level of container runtime [34]. As shared tasks engage in

significant interactions beyond host boundaries, security

monitoring of distributed workloads is not covered in

Holger’s work.

IV. CONCLUSION

More than ever, machine learning systems are being

developed and only a tiny percentage of these proofs of

concepts, meanwhile, are implemented and put into

production. Furthermore, the academic community has

concentrated a great deal on developing machine learning

models but not nearly as much on applying sophisticated

real-world applications of machine learning. In reality,

data specialists still do the majority of ML operations

manually. The Machine Learning Operations (MLOps)

methodology aims to address these problems. To put it

simple, ML model combine data and code but MLOps is

about combine ML model (Algorithms, Weights and

Hyperparameters) and software (Scripts, Libraries,

Infrastructure and DevOps). By another word, MLOps

integrates with SDLC (Source control repositories, etc.) for

code and integrates with DevOps for Automation, Scale

and Collaboration.

The machine learning solution's efficiency and

effectiveness are determined only by its features and

nature. The research took a substantial amount of time and

effort before being able to obtain the necessary information

to find answers to various opened areas, especially MLOps

monitoring and constraints, which leads to believe that the

documentation is insufficiently detailed, particularly for

those who are unfamiliar with the technology. The goal of

this initiative is to clarify MLOps by examining the

literature and instruments already in use in order to derive

a comprehensive definition of MLOps and its associated

ideas and procedures such as containers.

The findings illustrate that even there are many benefits of

using containers, there are a few drawbacks that can be

Informatics Bulletin, Helwan University, Vol 7 Issue 1, January 2025

difficult for companies whose IT architecture and

procedures demand formal approaches and

standardization. Because the concept of containers is

linked to automation in various fields and DevOps, which

means the process automating of generating containers and

then deploying them to the platform as a service

environment like RedHat OpenShift, Amazon Web

Services or IBM BlueMix by extending current

architecture modelling standards, this introduce one of the

many challenges in maintaining machine learning systems

and DevOps as well which is Monitoring.

Moreover, not many new machine learning models have

been adopted by the container orchestration in the past few

years and the monitoring system for the container service

needs to be examined very specifically for every container

and its entirety and to understand the relationships that

exist between the containers which will leads by its role to

the areas of monitoring the ML model by utilizing MLOps

to automatically monitor the ML model's characteristics

and features and identify what kinds of issues MLOps

techniques could be most appropriate for; in order to

increase the frequency of software deployments have a big

challenge.

REFERENCES

[1] F. Calefato, F. Lanubile, and L. Quaranta, A Preliminary Investigation of

MLOps Practices in GitHub, vol. 1, no. 1. Association for Computing

Machinery, 2022. doi: 10.1145/3544902.3546636.

[2] S. Garg, P. Pundir, G. Rathee, P. K. Gupta, S. Garg, and S. Ahlawat, “On

Continuous Integration / Continuous Delivery for Automated Deployment

of Machine Learning Models using MLOps,” Proc. - 2021 IEEE 4th Int.

Conf. Artif. Intell. Knowl. Eng. AIKE 2021, no. Ci, pp. 25–28, 2021, doi:

10.1109/AIKE52691.2021.00010.

[3] D. Kreuzberger, N. Kühl, and S. Hirschl, “Machine Learning Operations

(MLOps): Overview, Definition, and Architecture,” 2022, [Online].

Available: http://arxiv.org/abs/2205.02302

[4] E. Calikus, Self-Monitoring using Joint Human- Machine Learning :

Algorithms and Applications, no. 69.

[5] T. Schröder and M. Schulz, “Monitoring machine learning models: a

categorization of challenges and methods,” Data Sci. Manag., vol. 5, no.

3, pp. 105–116, 2022, doi: 10.1016/j.dsm.2022.07.004.

[6] N. Hewage and D. Meedeniya, “Machine Learning Operations: A Survey

on MLOps Tool Support,” no. February, 2022, doi:

10.48550/arXiv.2202.10169.

[7] P. Ruf, M. Madan, C. Reich, and D. Ould-Abdeslam, “Demystifying

mlops and presenting a recipe for the selection of open-source tools,”

Appl. Sci., vol. 11, no. 19, 2021, doi: 10.3390/app11198861.

[8] Y. Liu, “Understanding MLOps : a Review of " Practical Deep Learning

at Scale with Understanding MLOps : a Review of ‘ Practical Deep

Learning at Scale with MLFlow ’ by Yong Liu,” no. July, 2022, doi:

10.13140/RG.2.2.21031.83369.

[9] G. Bou Ghantous and A. Q. Gill, Evaluating the DevOps Reference

Architecture for Multi-cloud IoT-Applications, vol. 2, no. 2. Springer

Singapore, 2021. doi: 10.1007/s42979-021-00519-6.

[10] M. Rowse and J. Cohen, “A survey of DevOps in the South African

software context,” Proc. Annu. Hawaii Int. Conf. Syst. Sci., vol. 2020-

Janua, pp. 6785–6794, 2021, doi: 10.24251/hicss.2021.814.

[11] P. Agrawal and N. Rawat, “Devops, A New Approach to Cloud

Development Testing,” IEEE Int. Conf. Issues Challenges Intell. Comput.

Tech. ICICT 2019, 2019, doi: 10.1109/ICICT46931.2019.8977662.

[12] F. Innlandet and R. Colomo-palacios, “DevSecOps : A Multivocal

Literature Review DevSecOps : A Multivocal Literature Review,”

Commun. Comput. Inf. Sci., no. October, 2017, doi: 10.1007/978-3-319-

67383-7.

[13] R. Subramanya, S. Sierla, and V. Vyatkin, “From DevOps to MLOps:

Overview and Application to Electricity Market Forecasting,” Appl. Sci.,

vol. 12, no. 19, 2022, doi: 10.3390/app12199851.

[14] B. Mayumi, A. Matsui, and D. H. Goya, “Applying DevOps to Machine

Learning Processes : A Systematic Mapping,” 2019.

[15] M. A. Mascheroni and E. Irrazábal, “Continuous testing and solutions for

testing problems in continuous delivery: A systematic literature review,”

Comput. y Sist., vol. 22, no. 3, pp. 1009–1038, 2018, doi: 10.13053/CyS-

22-3-2794.

[16] B. Fitzgerald and K. Stol, “Continuous software engineering : A roadmap

and agenda,” vol. 000, pp. 10–12, 2015.

[17] P. Bellishree and Deepamala N, “A Survey on Docker Container and its

Use Cases,” Int. Res. J. Eng. Technol., no. July, pp. 2716–2720, 2020.

[18] B. S. Kim, S. H. Lee, Y. R. Lee, Y. H. Park, and J. Jeong, “Design and

Implementation of Cloud Docker Application Architecture Based on

Machine Learning in Container Management for Smart Manufacturing,”

Appl. Sci., vol. 12, no. 13, pp. 1–16, 2022, doi: 10.3390/app12136737.

[19] A. K. Yadav, M. L. Garg, and Ritika, Docker containers versus virtual

machine-based virtualization, vol. 814, no. January. Springer Singapore,

2019. doi: 10.1007/978-981-13-1501-5_12.

[20] G. E. De Velp, E. Rivière, and R. Sadre, “Understanding the performance

of container execution environments,” WOC 2020 - Proc. 2020 6th Int.

Work. Contain. Technol. Contain. Clouds, Part Middlew. 2020, no. 37,

pp. 37–42, 2020, doi: 10.1145/3429885.3429967.

[21] E. Oakes et al., “SOCK : Rapid Task Provisioning with Serverless-

Optimized Containers SOCK : Rapid Task Provisioning with Serverless-

Optimized Containers,” 2018.

[22] B. Burns, “Design patterns for container-based distributed systems”.

[23] Z. Shen et al., “X-Containers: Breaking Down Barriers to Improve

Performance and Isolation of Cloud-Native Containers,” Int. Conf. Archit.

Support Program. Lang. Oper. Syst. - ASPLOS, pp. 121–135, 2019, doi:

10.1145/3297858.3304016.

[24] E. Summary, “PRINCIPLES OF CONTAINER-BASED”.

[25] M. Fokaefs, C. Barna, R. Veleda, M. Litoiu, J. Wigglesworth, and R.

Mateescu, “Enabling DevOps for Containerized Data-Intensive

Applications: An Exploratory Study,” 28th Mod. Artif. Intell. Cogn. Sci.

Conf. MAICS 2017, pp. 189–190, 2017, doi: 10.1145/1235.

[26] R. Madhumathi, “The Relevance of Container Monitoring Towards

Container Intelligence,” 2018 9th Int. Conf. Comput. Commun. Netw.

Technol. ICCCNT 2018, pp. 1–5, 2018, doi:

10.1109/ICCCNT.2018.8493766.

[27] P. Liu and J. Guitart, “Performance comparison of multi-container

deployment schemes for HPC workloads: an empirical study,” J.

Supercomput., vol. 77, no. 6, pp. 6273–6312, 2021, doi: 10.1007/s11227-

020-03518-1.

[28] “Engineering DevOps from Chaos to Continuous Improvement and

Beyond,” 2019.

[29] A. J. Younge, K. Pedretti, R. E. Grant, and R. Brightwell, “A Tale of Two

Systems: Using Containers to Deploy HPC Applications on

Supercomputers and Clouds,” Proc. Int. Conf. Cloud Comput. Technol.

Sci. CloudCom, vol. 2017-Decem, pp. 74–81, 2017, doi:

10.1109/CloudCom.2017.40.

[30] C. Anderson, “Docker,” 2015.

[31] G. Cusack et al., “Efficient microservices with elastic containers,” Conex.

2019 Companion - Proc. 15th Int. Conf. Emerg. Netw. Exp. Technol. Part

Conex. 2019, no. June 2020, pp. 65–67, 2019, doi:

10.1145/3360468.3368180.

[32] Z. Zhong, M. Xu, M. A. Rodriguez, C. Xu, and R. Buyya, “Machine

Learning-based Orchestration of Containers: A Taxonomy and Future

Directions,” ACM Comput. Surv., vol. 54, no. 10s, pp. 1–35, 2022, doi:

10.1145/3510415.

[33] M. Testi et al., “MLOps: A Taxonomy and a Methodology,” IEEE

Access, vol. 10, no. June, pp. 63606–63618, 2022, doi:

10.1109/ACCESS.2022.3181730.

[34] H. Gantikow, C. Reich, M. Knahl, and N. Clarke, “Rule-Based Security

Monitoring of Containerized Environments,” Commun. Comput. Inf. Sci.,

vol. 1218 CCIS, pp. 66–86, 2020, doi: 10.1007/978-3-030-49432-2_4.

[35] I. H. Sarker, “Machine Learning: Algorithms, Real-World Applications

and Research Directions,” SN Comput. Sci., vol. 2, no. 3, pp. 1–21, 2021,

doi: 10.1007/s42979-021-00592-x.

[36] A. Ławrynowicz and V. Tresp, “Introducing machine learning,” Perspect.

Ontol. Learn., vol. 18, no. January, pp. 35–50, 2014, doi: 10.1007/978-3-

030-67626-1_8.

[37] S. Wazir, G. S. Kashyap, and P. Saxena, “MLOps : A Review”.

[38] A. Paleyes, R. G. Urma, and N. D. Lawrence, “Challenges in Deploying

Machine Learning: A Survey of Case Studies,” ACM Comput. Surv., vol.

55, no. 6, 2022, doi: 10.1145/3533378.

[39] S. Alla and S. K. Adari, Beginning MLOps with MLFlow. 2021. doi:

10.1007/978-1-4842-6549-9.

[40] G. Recupito et al., “A Multivocal Literature Review of MLOps Tools and

Features,” no. July, pp. 84–91, 2023, doi: 10.1109/seaa56994.2022.00021.

[41] L. Cardoso Silva et al., “Benchmarking Machine Learning Solutions in

Production,” Proc. - 19th IEEE Int. Conf. Mach. Learn. Appl. ICMLA

2020, no. March, pp. 626–633, 2020, doi:

10.1109/ICMLA51294.2020.00104.

[42] I. Karamitsos, S. Albarhami, and C. Apostolopoulos, “Applying devops

practices of continuous automation for machine learning,” Inf., vol. 11,

no. 7, pp. 1–15, 2020, doi: 10.3390/info11070363.

[43] B. Karlaš et al., “Building Continuous Integration Services for Machine

Learning,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., no.

November, pp. 2407–2415, 2020, doi: 10.1145/3394486.3403290.

[44] S. Makinen, H. Skogstrom, E. Laaksonen, and T. Mikkonen, “Who needs

MLOps: What data scientists seek to accomplish and how can MLOps

help?,” Proc. - 2021 IEEE/ACM 1st Work. AI Eng. - Softw. Eng. AI,

Informatics Bulletin, Helwan University, Vol 7 Issue 1, January 2025

WAIN 2021, pp. 109–112, 2021, doi: 10.1109/WAIN52551.2021.00024.

[45] Y. Liu, Z. Ling, B. Huo, B. Wang, T. Chen, and E. Mouine, “Building A

Platform for Machine Learning Operations from Open Source

Frameworks,” IFAC-PapersOnLine, vol. 53, no. 5, pp. 704–709, 2020,

doi: 10.1016/j.ifacol.2021.04.161.

[46] O. Spjuth, J. Frid, and A. Hellander, “The machine learning life cycle and

the cloud: implications for drug discovery,” Expert Opin. Drug Discov.,

vol. 16, no. 9, pp. 1071–1079, 2021, doi:

10.1080/17460441.2021.1932812.

[47] L. E. L. B, I. Crnkovic, R. Ellinor, and J. Bosch, “From a Data Science

Driven Process to a Continuous Delivery Process for Machine Learning

Systems,” Proceedings- PROFES- 21st Int. Conf., vol. 1, 2020.

[48] B. Derakhshan, A. R. Mahdiraji, T. Rabl, and V. Markl, “Continuous

deployment of machine learning pipelines,” Adv. Database Technol. -

EDBT, vol. 2019-March, no. March, pp. 397–408, 2019, doi:

10.5441/002/edbt.2019.35.

[49] L. Baier and S. Seebacher, “Challenges in the Deployment and,” 27th

Eur. Conf. Inf. Syst., no. May, pp. 1–15, 2019, [Online]. Available:

https://aisel.aisnet.org/ecis2019_rp/163/

[50] D. A. Tamburri, “Sustainable MLOps: Trends and Challenges,” Proc. -

2020 22nd Int. Symp. Symb. Numer. Algorithms Sci. Comput. SYNASC

2020, pp. 17–23, 2020, doi: 10.1109/SYNASC51798.2020.00015.

[51] C. Wu, E. Haihong, and M. Song, “An Automatic Artificial Intelligence

Training Platform Based on Kubernetes,” ACM Int. Conf. Proceeding

Ser., pp. 58–62, 2020, doi: 10.1145/3378904.3378921.

[52] E. Casalicchio and S. Iannucci, “The state-of-the-art in container

technologies: Application, orchestration and security,” Concurr. Comput.

Pract. Exp., vol. 32, no. 17, pp. 1–17, 2020, doi: 10.1002/cpe.5668.

[53] Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C. Delimitrou, “Sinan: ML-

based and QoS-aware resource management for cloud microservices,” Int.

Conf. Archit. Support Program. Lang. Oper. Syst. - ASPLOS, pp. 167–

181, 2021, doi: 10.1145/3445814.3446693.

[54] S. Venkateswaran and S. Sarkar, “Fitness-Aware Containerization Service

Leveraging Machine Learning,” IEEE Trans. Serv. Comput., vol. 14, no.

6, pp. 1807–1820, 2021, doi: 10.1109/TSC.2019.2898666.

[55] H. Sami, A. Mourad, H. Otrok, and J. Bentahar, “FScaler: Automatic

Resource Scaling of Containers in Fog Clusters Using Reinforcement

Learning,” 2020 Int. Wirel. Commun. Mob. Comput. IWCMC 2020, no.

October, pp. 1824–1829, 2020, doi:

10.1109/IWCMC48107.2020.9148401.

[56] S. Zhang, T. Wu, M. Pan, C. Zhang, and Y. Yu, “A-SARSA: A Predictive

Container Auto-Scaling Algorithm Based on Reinforcement Learning,”

Proc. - 2020 IEEE 13th Int. Conf. Web Serv. ICWS 2020, pp. 489–497,

2020, doi: 10.1109/ICWS49710.2020.00072.

[57] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer, “Firm:

An intelligent fine-grained resource management framework for SLO-

Oriented microservices,” Proc. 14th USENIX Symp. Oper. Syst. Des.

Implementation, OSDI 2020, pp. 805–825, 2020.

[58] Y. Cheng, C. Wang, H. Yu, Y. Hu, and X. Zhou, “GRU-ES: Resource

usage prediction of cloud workloads using a novel hybrid method,” Proc.

- 21st IEEE Int. Conf. High Perform. Comput. Commun. 17th IEEE Int.

Conf. Smart City 5th IEEE Int. Conf. Data Sci. Syst.

HPCC/SmartCity/DSS 2019, pp. 1249–1256, 2019, doi:

10.1109/HPCC/SmartCity/DSS.2019.00175.

[59] R. Fu, Z. Zhang, and L. Li, “Using LSTM and GRU Neural Network

Methods for Traffic Flow Prediction,” IEEE, pp. 5–9, 2016.

[60] J. E. Dartois, J. Boukhobza, A. Knefati, and O. Barais, “Investigating

Machine Learning Algorithms for Modeling SSD I/O Performance for

Container-Based Virtualization,” IEEE Trans. Cloud Comput., vol. 9, no.

3, pp. 1103–1116, 2021, doi: 10.1109/TCC.2019.2898192.

[61] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration Modeling

and Learning Algorithms for Containers in Fog Computing,” IEEE Trans.

Serv. Comput., vol. 12, no. 5, pp. 712–725, 2019, doi:

10.1109/TSC.2018.2827070.

[62] Y. Bao, Y. Peng, and C. Wu, “Deep Learning-Based Job Placement in

Distributed Machine Learning Clusters With Heterogeneous Workloads,”

IEEE/ACM Trans. Netw., vol. 31, no. 2, pp. 634–647, 2023, doi:

10.1109/TNET.2022.3202529.

[63] Y. Xu, J. Yao, H. A. Jacobsen, and H. Guan, “Cost-efficient negotiation

over multiple resources with reinforcement learning,” 2017 IEEE/ACM

25th Int. Symp. Qual. Serv. IWQoS 2017, 2017, doi:

10.1109/IWQoS.2017.7969160.

[64] A. I. Orhean, F. Pop, and I. Raicu, “New scheduling approach using

reinforcement learning for heterogeneous distributed systems,” J. Parallel

Distrib. Comput., vol. 117, pp. 292–302, 2018, doi:

10.1016/j.jpdc.2017.05.001.

[65] F. Rossi, M. Nardelli, and V. Cardellini, “Horizontal and vertical scaling

of container-based applications using reinforcement learning,” IEEE Int.

Conf. Cloud Comput. CLOUD, vol. 2019-July, pp. 329–338, 2019, doi:

10.1109/CLOUD.2019.00061.

[66] H. C. Song, “An overview of underwater time-reversal communication,”

IEEE J. Ocean. Eng., vol. 41, no. 3, pp. 644–655, 2016, doi:

10.1109/JOE.2015.2461712.

[67] H. Dawid, CORDIC Algorithms and Architectures. 2018. doi:

10.1201/9781482276046-22.

[68] S. Y. Shah, Z. Yuan, S. Lu, and P. Zerfos, “Dependency analysis of cloud

applications for performance monitoring using recurrent neural

networks,” Proc. - 2017 IEEE Int. Conf. Big Data, Big Data 2017, pp.

1534–1543, 2017, doi: 10.1109/BigData.2017.8258087.

[69] X. Tang, Q. Liu, Y. Dong, J. Han, and Z. Zhang, “Fisher: An efficient

container load prediction model with deep neural network in clouds,”

Proc. - 16th IEEE Int. Symp. Parallel Distrib. Process. with Appl. 17th

IEEE Int. Conf. Ubiquitous Comput. Commun. 8th IEEE Int. Conf. Big

Data Cloud Comput. 11t, pp. 199–206, 2018, doi:

10.1109/BDCloud.2018.00041.

[70] M. Yan, X. M. Liang, Z. H. Lu, J. Wu, and W. Zhang, “HANSEL:

Adaptive horizontal scaling of microservices using Bi-LSTM,” Appl. Soft

Comput., vol. 105, p. 107216, 2021, doi: 10.1016/j.asoc.2021.107216.

[71] Y. L. Cheng, C. C. Lin, P. Liu, and J. J. Wu, “High resource utilization

auto-scaling algorithms for heterogeneous container configurations,”

Proc. Int. Conf. Parallel Distrib. Syst. - ICPADS, vol. 2017-Decem, pp.

143–150, 2017, doi: 10.1109/ICPADS.2017.00030.

[72] K. Ye, Y. Kou, C. Lu, Y. Wang, and C. Z. Xu, “Modeling Application

Performance in Docker Containers Using Machine Learning Techniques,”

Proc. Int. Conf. Parallel Distrib. Syst. - ICPADS, vol. 2018-Decem, pp.

1057–1062, 2018, doi: 10.1109/PADSW.2018.8644581.

[73] H. Zhang, H. Ma, G. Fu, X. Yang, Z. Jiang, and Y. Gao, “Container based

video surveillance cloud service with fine-grained resource provisioning,”

IEEE Int. Conf. Cloud Comput. CLOUD, vol. 0, pp. 758–765, 2016, doi:

10.1109/CLOUD.2016.103.

[74] Y. Meng, R. Rao, X. Zhang, and P. Hong, “CRUPA: A container resource

utilization prediction algorithm for auto-scaling based on time series

analysis,” PIC 2016 - Proc. 2016 IEEE Int. Conf. Prog. Informatics

Comput., pp. 468–472, 2017, doi: 10.1109/PIC.2016.7949546.

[75] R. Miñón, J. Diaz-De-arcaya, A. I. Torre-Bastida, and P. Hartlieb,

“Pangea: An MLOps Tool for Automatically Generating Infrastructure

and Deploying Analytic Pipelines in Edge, Fog and Cloud Layers,”

Sensors, vol. 22, no. 12, 2022, doi: 10.3390/s22124425.

[76] S. Moreschini, F. Lomio, D. Hastbacka, and D. Taibi, “MLOps for

evolvable AI intensive software systems,” Proc. - 2022 IEEE Int. Conf.

Softw. Anal. Evol. Reengineering, SANER 2022, no. January, pp. 1293–

1294, 2022, doi: 10.1109/SANER53432.2022.00155.

[77] J. Brier and lia dwi jayanti, “DevSecOps of Containerization,” vol. 21, no.

1, pp. 1–9, 2020, [Online]. Available: http://journal.um-

surabaya.ac.id/index.php/JKM/article/view/2203

