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Abstract—The proliferation of blockchain technology signifies a 

revolutionary shift in the management of online transactions, 

offering unparalleled security and efficiency through immutable, 

peer-to-peer decentralized networks. Despite its transformative 

potential, blockchain introduces significant complexities and 

testing challenges, particularly within the realm of smart 

contracts. This paper surveys the landscape of smart contract 

testing, outlining the critical challenges and the necessity for 

specialized testing tools and methodologies. Through a 

comprehensive review of existing literature and practical 

approaches, this study emphasizes the importance of rigorous 

testing protocols to ensure the reliability and security of 

blockchain applications. Key areas of focus include transaction 

cost optimization, defect identification, and the development of 

robust testing frameworks, all aimed at maintaining high-quality 

standards in this rapidly evolving technological domain. 

 
Index Terms— Blockchain, Smart Contract, Smart Contract 

Testing, DevOps. 

  

I. INTRODUCTION 

Digital transactions are rapidly gaining traction globally due to 

enhanced security, ease of use, and speed. Blockchain 

technology provides a secure and trustworthy platform for 

managing online transactions without relying on intermediaries 

[1]. As more individuals shift towards digital transactions, 

security becomes a critical concern. Blockchain and smart 

contracts have attracted significant attention from various 

sectors, including financial institutions and regulatory bodies. 

The adoption of blockchain is expected to continue growing 

exponentially in the coming years. This technology enables 

secure and transparent transactions, fostering trust among users. 

Organizations are investing heavily in blockchain to capitalize 

on its transformative potential. 

 

A blockchain functions as a decentralized ledger distributed 

across a public or private network of peers where information 

is shared [2], replicated, and synchronized. This ledger 

permanently records the history of asset exchanges among 

network members in a sequential manner. Each transaction is 

timestamped and assigned a unique cryptographic signature for 

security. Network nodes collectively agree on a consensus  

protocol to validate and update ledger records, removing the 

need for intermediary entities like financial institutions. Once 

data is stored on the blockchain, it remains immutable. Verified  

transactions are grouped into blocks and linked to previous 

blocks, forming a chain. Blockchain technology offers vast 

potential to revolutionize digital transaction management. 

 

 

Blockchain technology offers a fresh perspective on software 

development, as decentralization and anonymity among 

network nodes create distinct challenges for testing [2]. 

Traditional testing methods may not be adequate in light of 

these complexities. Additionally, the unchangeable nature of 

the blockchain implies that errors in the production system 

could necessitate extensive code modifications. Consequently, 

it is essential to employ suitable testing techniques and 

methodologies. This paper seeks to delineate the hurdles and 

propose approaches for testing blockchain applications to 

uphold superior quality standards.  

 

This paper provides a comprehensive survey of the current 

methodologies, tools, and challenges associated with the testing 

and analysis of smart contracts in blockchain-based 

applications. The unique features of blockchain, such as 

distributed consensus mechanisms and the unchangeable nature 

of the ledger, introduce complexities that traditional testing 

methods cannot adequately address. This study highlights the 

need for specialized testing tools and techniques to ensure high-

quality software delivery in blockchain applications. We delve 

into various testing strategies, including static and dynamic 

testing, functional and non-functional testing, and mutation 

testing, specifically tailored for smart contracts. By examining 

existing tools and methodologies, such as EVMFuzz and 

Contract Fuzzer, and reviewing recent advancements in the 

field, our contribution underscores the importance of 

developing a blockchain-oriented software development 

lifecycle to meet the evolving demands of this transformative 

technology. 
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Table 1. Examples of most popular blockchains 

Platform 

 

Type Smart Contract 

Language 

Consensus 

Mechanism 

Main Application Contexts Related Projects 

 

Ethereum Public Solidity, 
Vyper 

 

Proof of Work Financial, 
Asset trading 

DAI 
Gitcoin 

Cryptokitties 

Quorum Private Solidity, 
Vyper 

Proof of Authority Financial, Supply Chain and 
Logistics 

Liink 
Komgo 

Project Ubin 

Hyperledger Fabric Public, 

Private 

Java, Go, 

JavaScript 

Proof of Work Supply chain, 

Trade finance, 
Stock trading 

IBM Food Trust 

Everledger diamond 
blockchain 

Hyperledger 

Sawtooth 

Private Rust, Go 

Python, Java 

PoET, PBFT, RAFT Supply chain, Provenance 

Tracking 

Sawtooth Private UTXO 

Sawtooth Marketplace 

NEM Private Java Proof of 

Importance 

Augmented reality, 

Advertising and marketing, 

Banking 

DigitCoin 

Bankera 

Pantos 

Stellar Public Solidity, 
JavaScript, Java, 

Go 

Stellar Consensus 
Protocol 

Remittance StellarX   
Tempo 

TillBilly 

Corda Private DAML, 
Kotlin, Java 

Validity and 
Uniqueness 

Energy trading, Insurance, 
Retail markets 

Energy Block Exchange 
TradeCloud 

MonetaGo 

 

 
The subsequent sections of the paper are structured as follows: 

Section II provides background material on blockchain smart 

contracts as well as software testing. In Section III, the focus 

shifts to smart contract testing. Section IV outlines various 

challenges associated with smart contract testing. Section V 

provides approaches to testing, while Section VI offers 

concluding remarks. Finally, Section VII presents references. 

 

II. BACKGROUND 

A. Blockchains And Smart Contracts 

Blockchains serve as the foundational infrastructure for digital 

currencies, featuring blocks secured against tampering or 

modification, with each block containing data referencing the 

previous one and a timestamp, ensuring data integrity [3]. 

Initially, first-generation blockchains like Bitcoin were 

primarily focused on facilitating cryptocurrency transactions, 

while second-generation blockchains like Ethereum expanded 

their scope to enable the development and execution of software 

by blockchain participants [4]. 

 

Blockchain networks are broadly categorized into public and 

private types: public, or permissionless, blockchains allow all 

participants to modify the ledger's state, prioritizing 

transparency but potentially compromising privacy. In contrast, 

private, or permissioned, blockchains restrict transactional 

participation to authorized entities, ensuring transactional 

privacy. In this section, we'll delve into the origins of 

blockchain and the development of smart contracts, along with 

highlighting the significance of software testing within the 

realm of smart contract development. Table 1 illustrates a 

comparison between the most commonly used blockchain 

Platforms [5].  

The table above illustrates a comparison of the most popular 

blockchain platforms and their smart contracts, including their 

primary application context and associated projects. 

 

Blockchain technology provides the distinctive ability to 

incorporate smart contracts into transactions, facilitating the 

execution of code in a decentralized and secure setting. Smart 

contracts, essentially code that executes automatically when 

certain conditions are met, utilize the permanence and 

resistance to censorship that are fundamental to blockchain 

systems. 

 

These contracts allow for the automation of business operations 

across various organizational borders, ensuring transparency 

and reliability. Developers encode business rules into smart 

contracts to govern transaction outcomes, such as payment 

execution upon successful delivery or fund reversal in case of 

delays or discrepancies. Smart contracts operate autonomously, 

executing predefined actions without human intervention, 

thereby enhancing efficiency and trust in blockchain-based 

legal agreements.  
 

The figure above outlines the functionality of a prototype smart 

contract. This contract is designed to automate rent payments, 

where the tenant initiates fund deposits into the contract. 

Subsequently, the landlord can withdraw these funds 

periodically, typically on a monthly basis. Additionally, the 

contract maintains a comprehensive record of all rent 

transactions, ensuring transparency and accountability for both 

parties involved. 
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Fig. 1. Example of a Smart Contract. 

 

A. Blockchain As A Service (Baas) 

 

Blockchain as a Service (BaaS) is a cloud-based solution that 

allows companies to develop, test, and deploy bespoke 

blockchain applications without the need for initial capital 

investment. This solution offers services such as consensus 

mechanisms and validation protocols, allowing businesses to 

develop their own solutions.  BaaS enables businesses to 

explore blockchain technology and concentrate on developing 

applications, letting customers and developers create 

blockchain extensions for current applications across various 

industries, thereby unlocking the potential of this 

transformative technology. 

 

Leading enterprise software providers such as IBM, Microsoft, 

and SAP have initiated the rollout of their cloud-based 

blockchain offerings. For instance, IBM unveiled IBM 

Blockchain in March 2017, marking the debut of an enterprise-

grade blockchain service built on the Linux Foundation's 

Hyperledger Fabric version 1.0. 

 

This service empowers developers to swiftly construct and 

deploy secure blockchain networks on the IBM Cloud, 

leveraging the robustness of IBM Linux ONE [6], renowned for 

its unparalleled security features. Similarly, Microsoft 

introduced the Coco Framework, an open-source solution 

tailored to create high-scale, confidential blockchain networks 

meeting enterprise demands [7].  

 

Coco's unique ledger construction approach ensures scalability, 

distributed governance, and heightened confidentiality without 

compromising on security and immutability. Furthermore, 

Microsoft offers Blockchain as a Service (BaaS), a cloud-based 

platform on Microsoft Azure, providing organizations with a 

rapid, cost-effective, and low-risk solution. SAP also launched 

SAP Leonardo, a digital innovation system, in May 2017. This 

platform seamlessly integrates cutting-edge technologies, 

including pre-built blockchain capabilities and the SAP Cloud 

Platform Blockchain service, empowering customers to 

redefine their business operations effectively. 

B. Importance of Software Testing 

 

The main aim of software development is to create products that 

meet customer needs effectively. As developers, it's crucial to 

embrace and utilize advanced technologies and programming 

languages to ensure product quality and value. The software 

development life cycle (SDLC) offers a standardized process 

for creating high-quality software, with testing playing a vital 

role [8]. Testing is essential for delivering quality products to 

customers. Traditionally, testing occurred towards the end of 

the coding phase or before product delivery. However, starting 

testing early in the development cycle can reduce defects and 

minimize rework costs. Principle 3 of software testing standards 

[9] emphasizes early testing, stating: “Principle 3: Early testing: 

Testing activities should start as early as possible in the 

software or system development life cycle and should focus on 

defined objectives. Involving the testing team from the 

beginning, during requirements and analysis phases, promotes 

a better understanding of the product and significantly reduces 

the cost of quality by identifying defects early in the 

development life cycle.” 

 

As mentioned in "Inspecting Requirements" by Wiegers [10], 

industry data indicates that around 50% of product defects 

originate from requirement elicitation. Additionally, 

approximately 80% of coding or design revisions result from 

prerequisite faults. "Software Testing Techniques" by Beizer 

[11] offers a comprehensive compilation of testing 

methodologies, with the author noting that designing tests is 

highly effective in preventing bugs.  

 

This underscores the significance of early testing, as detecting 

errors early in the process is crucial. Smart contract testing 

requires efficient test design to assess and validate contracts 

before deployment, emphasizing the importance of thorough 

testing practices. 
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C. Types and methodologies of Software Testing 

Testing seeks to assess different aspects of software to verify 

that it meets its design and requirements as specified by the 

client. The software testing process involves a series of 

activities that include executing the software code and 

evaluating its various properties to identify any errors present. 

However, it is limited in its ability to detect the absence of 

certain features due to the constraints of time and resources, 

resulting in incomplete testing.  In the software development 

life cycle (SDLC), there are four specific levels of testing: unit 

testing, integration testing, acceptance testing, and System 

testing. 

• Unit testing ensures the proper functioning of 

individual software code modules. 

• Integration testing aims to evaluate the functionality of 

units when integrated. 

• System testing verifies that the end-to-end system 

meets its predefined requirements. 

• Acceptance testing is conducted to ensure that the 

system aligns with business requirements and meets 

the criteria for delivery to end-users. 

Additionally, there are various kinds of software testing [12], 

which can range from straightforward static analysis to 

dynamic methods, as depicted in Figure 2. Static analysis refers 

to testing that doesn't involve executing the program but rather 

examines the structure, syntax, and data flow of the source 

code. 

 

Common methods for static analysis include inspections, 

reviews, and step-by-step analysis. Static analysis can be used 

alongside procedural verification techniques to validate the 

accuracy of the software. Conversely, dynamic testing involves 

executing the program, processing inputs, and generating 

outputs. 

 

Experiments are often conducted to evaluate test data and 

results, with the aim of confirming whether actual results 

conform to expected outcomes. Dynamic testing techniques can 

also encompass both functional and non-functional testing. 

 

Functional testing processes are conducted to verify the 

accuracy of a product's functional specifications. This type of 

testing is also referred to as discovery testing. Specific white-

box testing techniques, such as interface testing and mutation 

testing, are employed in this context. 

 

Non-functional testing covers various testing methods designed 

to evaluate non-functional requirements like usability, 

performance, security, and compliance. The goal is to verify if 

system components meet the specified requirements. Non-

functional testing is designed to evaluate the system's ability to 

handle user interactions while meeting nonfunctional 

parameters that are typically not covered by functional testing 

approaches. 

III. SMART CONTRACT TESTING 

 

Song et al. [13] presented a novel approach to detecting 

vulnerabilities in Ethereum smart contracts. The authors 

propose a multi-layer perceptron (MLP) based detection tool 

that leverages both opcode and control flow graph (CFG) 

features. This tool integrates static analysis and machine 

learning to identify various vulnerabilities such as reentrancy, 

arithmetic issues, unauthorized sends, and timestamp 

dependencies. The methodology includes extracting opcodes, 

simplifying them for better feature extraction, and using 

trigrams for n-gram analysis to capture contextual information. 

 

Driessen et al. [14] introduced SOLAR (Solidity Analyzer), a 

tool designed to test and verify the correctness of Solidity smart 

contracts. It emphasizes the importance of security and 

correctness in smart contracts due to their immutable nature 

once deployed on the blockchain. The motivation behind 

developing SOLAR stems from the numerous security 

vulnerabilities and bugs found in existing smart contracts, 

which can lead to significant financial losses. The paper 

highlights notable examples of such vulnerabilities and their 

consequences. 

 

Tamer et al. [15] introduced a new tool called DLVA , designed 

to detect vulnerabilities in Ethereum smart contracts using deep 

learning techniques. DLVA leverages deep learning to analyze 

Ethereum smart contracts without relying on predefined 

patterns, manual feature engineering, or expert rules. 

 

In [16] the authors propose a novel tool, SoliDetector, which 

leverages a knowledge graph to enhance the detection of defects 

in Solidity smart contracts. This approach outperforms existing 

tools like Mythril, Slither, and SmartCheck by maintaining 

higher precision and lower false-negative rates across various 

defect types. The knowledge graph approach allows 

SoliDetector to manipulate code information using SPARQL 

queries, achieving superior defect localization and scalability. 

Experimental results demonstrate that SoliDetector not only 

achieves a precision of 97.93% but also operates efficiently, 

requiring significantly less time to analyze smart contracts 

compared to other tools. 

 

Sangharatna et al. [17] SmartMuVerf, a novel approach to 

mutation verification for smart contracts, particularly focusing 

on Ethereum. The goal is to enhance the testing and verification 

of smart contracts, which are critical in managing high-value 

assets and ensuring the correct execution of decentralized 

applications on blockchain platforms. 

 

Anna Vacca [18] conducted an extensive investigation into 

different methods, software tools, and obstacles related to 

blockchain smart contracts development. The comprehensive 

study encompassed six main areas: testing of smart contracts, 

evaluation of smart contract code, metrics and security for 

smart contracts, performance of decentralized applications, and 

blockchain applications.  
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Testing serves not only to achieve code coverage but also to 

identify defects or bugs. Chen et al. [19] assert that smart 

contracts, being immutable, necessitate being devoid of defects. 

Through an analysis of various real-world smart contracts and 

related literature, the authors identified 20 types of malicious 

defects. The removal of these defects enhances the integrity of 

smart contracts. Additionally, the study outlines the 

repercussions stemming from contract defects, thereby aiding 

developers in recognizing fault indicators and taking 

appropriate corrective actions. 

 

Zhang et al. [20] discussed the creation of efficient test cases 

using data flow analysis from a control flow graph. Their 

strategy employs a genetic algorithm to sequentially optimize 

dynamic testing for smart contracts. This process begins with 

the creation of a control flow graph from the source code, which 

is then examined to determine critical statements and 

definition-use pairs specific to Solidity programs. Ultimately, 

they utilize a genetic algorithm combined with a function to 

generate test cases by calculating these definition-use pairs. 

 

Wang et al. [21] introduced a novel multi-objective approach, 

incorporating randomness and NSGA-II, aimed at generating 

cost-effective test suites. While numerous researchers have 

proposed various testing and verification methods for smart 

contracts, little emphasis has been placed on factors such as 

transaction costs, duration (time taken to execute transactions), 

and the coverage of untested code branches. Addressing these 

concerns, Wang et al. [21] focused on achieving cost-effective 

test suite generation for smart contracts through the 

implementation of the aforementioned multi-objective 

approaches. Additionally, the authors indicated that 

maximizing mutation-killed ability during test-suite generation 

remains an area for future investigation. 

Several research studies have proposed testing methodologies 

for smart contracts using fuzzy approaches to detect faults or 

security vulnerabilities. Tools like EVMFuzz [22], 

ContractFuzzer [23], and Fuse [24] have been developed for 

this purpose. EVMFuzz [22] focuses on identifying weaknesses 

in Ethereum Virtual Machines (EVM) by employing 

differential fuzz testing. The core idea involves continuously 

generating smart contracts and feeding them into the EVM to 

uncover as many unpredictable outcomes as possible, aiding in 

vulnerability detection through output cross-referencing. The 

tool generates smart contracts with predefined mutators and 

utilizes dynamic priority scheduling. Notably, EVMFuzz has 

successfully uncovered several previously unknown security 

bugs. 

 

A tool known as Contract Fuzzer [23] has been designed to test 

the reliability of smart contracts. It generates fuzzing input 

based on the specific application binary interface of smart 

contracts, then analyzes and logs any identified vulnerabilities. 

Out of approximately 6991 Smart Contracts tested, this tool 

detected over 459 flaws with high accuracy, including 

significant issues such as "The DAO" bug and the Parity Wallet 

bug, which resulted in substantial financial losses amounting to  

millions of dollars. 

 

The majority of researchers employed Ethereum technology for 

creating tests for smart contracts. Within each category 

examined, the authors outlined several unresolved issues. Their 

analysis on the literature pertaining to smart contracts and 

blockchain applications indicates a requirement for a 

development life cycle based on blockchain technology. 

 

 

Fig. 2. Overview of Software Testing Types [12] 
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TABLE 2. The Advantages and  

Drawbacks of the research works examined 
 

Paper Advantages Drawbacks 

[13] - The use of a Multi-Layer Perceptron (MLP) model 

allows for the dynamic training of the tool to newer 

smart contract bugs and Solidity versions. This 

approach helps in reducing the false positive rate and 

adapts to the evolving nature of smart contracts. 

 

-  The use of synthetic data generation methods like SMOTE for 

introducing vulnerabilities into the training dataset may not 

accurately represent real-world scenarios. This can lead to 

imbalances in the training dataset and affect the overall 

performance of the model. 

[14] - Automatic generation of high-coverage test suites. 

 

- Simulates various blockchain scenarios for thorough 

testing. 

 

- Supports extensions for more algorithms and 

techniques. 

 

- Techniques like formal verification can be resource-intensive. 

 

- Reliance on developer-provided models can limit 

effectiveness. 

[15] - The authors use training algorithms that are robust 

enough to cope with problems like mislabeled 

contracts and increase the analysis capabilities from 

source code to bytecode in terms of speed and 

accuracy. 

- While it gives speed, there were no such discussions about 

whether it is scalable in DLVA when deployed and expanded at 

a large scale across thousands of nodes or whether the tool can 

manage many contracts at a time. This includes potential 

bottlenecks in data processing and analysis. 

 

 

[16] - The SoliDetector tool achieves a high precision rate 

of 97.93%, indicating its accuracy in identifying 

defects without generating a significant number of 

false positives. 

 

- The knowledge graph approach allows for scalable 

analysis and is capable of handling a large number of 

smart contracts without compromising performance. 

 

 

- The authors acknowledge the need for future improvements, 

such as incorporating execution information to enrich the 

knowledge graph, which suggests that the current 

implementation is still evolving and may require further 

refinement to handle more complex scenarios. 

[17] 

 

 

 

- Proposes a significant improvement in the testing of 

smart contracts. The authors represent a novel 

approach to mutation testing, which could be helpful in 

ensuring the solidity and security of smart contracts 

before deploying them onto a blockchain. 

- SmartMuVerf focuses on logical and relational operator 

mutations in the current implementation but does not consider 

the other types of faults that may cause a substantial contribution 

to the lack of robustness in smart contracts, such as state 

management, arithmetic operations, and external calls. 

 

[18] - The authors identified several open challenges within 

six principal categories, suggesting the need for further 

research and development to address these issues 

effectively. 

 

- There is a demand for a blockchain-oriented software 

development life cycle. 

 

- There is a need to create specialized tools for specific types of 

testing, such as mutation testing, which are essential for ensuring 

the quality of smart contracts. 

[19] - Improved robustness of smart contracts. - The defect dataset can be used in developing smart contract 

defect detection tools. 

 

[20] - Proposed ADF-GA for Solidity based Ethereum 

smart contract programs that generate test cases by 

using all-uses data flow and genetic algorithms, 

achieves more coverage and has less number of replays 

in the genetic algorithm. 

- Requires further optimization in selecting 

and the operation of mutants for generating test cases. 

 

- Needs to investigate more suitable methods for the evaluation 

of test cases. 

 

- There are restrictions executing in the environment of smart 

contracts for performing dynamic testing, which requires a 

solution. 

 

[21] 

 

- Provides cost efficient test cases - Requires maximizing the ability of killed mutants during the 

test-suite generation. 
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[22] - EVMFuzz automates the generation of test cases, 

significantly reducing manual effort and increasing 

testing efficiency. 

 

- The framework successfully identified numerous 

inconsistencies in gas usage and opcode sequences 

among different EVM implementations, revealing 

hidden vulnerabilities that could lead to serious 

security issues. 

 

- While EVMFuzz is effective in identifying inconsistencies, it 

may also produce false positives and negatives, necessitating 

further manual analysis to confirm the findings. 

 

- Some generated seed contracts may contain rare situations, 

such as illegal data types or infinite loops, which certain EVM 

platforms may not handle correctly, leading to potential crashes 

or erroneous outputs 

 

[23] - ContractFuzzer defines new test oracles that can 

precisely detect real-world vulnerabilities in smart 

contracts. 

  

- ContractFuzzer automatically generates inputs based 

on the API interfaces of smart contracts, making the 

testing process more efficient and less prone to human 

error. 

- The immutability of smart contracts makes updating them after 

deployment difficult, which can delay the application of security 

fixes. 

 

 

 

[24] 

 

- Fuse has shown high true positive rates (96-100%) in 

detecting various vulnerability classes. 

 

- Provides comprehensive test reports and 

visualizations to aid developers in understanding 

vulnerabilities. 

 

- Encrypted submission of contracts and test reports 

ensures privacy and security. 

 

- Offline analysis can be inefficient, and online analysis may 

slow down smart contract execution.  

 

- Integration of Dapp testing with fuzz testing of smart contracts 

is still under study and not fully realized.  

 

 

Table  2 presents a synthesis of the Advantages and Drawbacks 

of the research works examined in this literature review. In the 

table above, we highlighted the evolution and focus of research 

in blockchain and smart contract development, emphasizing the 

following:  

o Testing methodologies 

o Vulnerability detection 

o The importance of rigorous software testing practices 

IV. CHALLENGES IN TESTING BLOCKCHAIN SMART 

CONTRACT 

 

This section outlines the various triggers inherent in testing 

smart contract executions. The main challenges are: 

 

A. Public vs Private blockchain 

The scope and thoroughness of testing are greatly affected by 

whether the implementation is carried out on a public platform 

such as Ethereum or on a customized platform designed 

specifically for an organization or consortium [25, 26]. Testing 

private blockchains tends to be more straightforward due to the 

controlled environment, which facilitates the simulation of 

different scenarios and allows for internal testing using 

conventional methods. 

 

A detailed test strategy can be developed due to the customized 

functionality. However, testing becomes more complex with 

public platform implementations. Public blockchains lack 

limits on node participation, face challenges in achieving 

consensus [27], may experience transaction speed reductions, 

hard fork occurrences, and other issues, making it challenging 

to design comprehensive test strategies and cases. 

 

B. Security Vulnerabilities 

The widespread adoption of blockchain can be attributed to the 

inherent security it offers. Alongside significant security 

benefits, there are also certain challenges that need attention. 

Failure to address these challenges appropriately could lead to 

severe consequences, particularly within the finance industry. 

Whether dealing with public or private blockchains, a key 

challenge lies in ensuring the security of the network 

architecture through thorough testing. Nodes within a network 

may exhibit unresponsiveness or sporadic activity for 

questionable reasons. Comprehensive testing involving various 

scenarios is imperative to safeguard the consensus process and 

maintain ledger consistency. 

 

In the realm of private blockchain systems, there may be 

occasions where transaction reversibility is essential, perhaps 

due to attempted theft or other unforeseen circumstances. In 

such instances, it becomes imperative to conduct thorough 

validation checks to uphold the integrity of the distributed 

ledger. Testing procedures must ensure that transactional data 

remains intact throughout such processes. Private blockchains, 

like other distributed architectures, rely on network 

communication for accessing and updating transactional data, 

rendering them susceptible to denial-of-service and identity-

based attacks [28].  

 

Consequently, meticulous testing is indispensable to mitigate 

these risks and fortify the system against potential 

vulnerabilities. Despite blockchain technology's overarching 
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focus on security, it encounters challenges that may not be 

entirely addressed within existing test frameworks and 

methodologies. 

 

C. Decentralized Environment 

Proper testing in blockchain implementations relies heavily on 

having a test environment that mirrors the production setup 

[29]. Access to a test platform resembling the actual 

deployment is crucial; without it, considerable resources and 

time may be required to replicate the environment.  

Open-source implementations offer distinct test instances that 

mimic real scenarios, facilitating comprehensive testing of 

transaction functionalities. Private blockchain setups demand 

tailored test environments to accommodate customized features 

effectively. 

 

As blockchain integration becomes more prevalent within 

existing business frameworks, integration testing assumes 

greater importance. Rather than standalone development, 

blockchain is increasingly being integrated into pre-existing 

applications. Ensuring seamless interaction between blockchain 

implementations and existing systems poses a significant 

challenge.  

 

Testing teams must thoroughly understand interface points and 

communication channels to maintain consistency across 

processes. Providing access to application programming 

interfaces (APIs) used for communication enables quality 

assurance teams to validate proper integration between legacy 

systems and blockchain components. 

 

D. Lack of Standardization 

The lack of understanding of innovation and inadequate skills 

or experience in designing and developing smart contracts are 

key factors. Furthermore, the lack of standardization [30] in 

terminology leads to decreased clarity, quality, and efficiency. 

Establishing accepted practices for developing test suites 

through open-source collaboration would greatly benefit smart 

contract implementation and enhance product quality. 

Blockchain, being a relatively new technology, requires a deep 

understanding of its concepts and potential to be effectively 

applied in various domains, such as healthcare or supply chain 

management.  

 

Despite being introduced by Satoshi Nakamoto [31] in 2008 as 

a critical underlying technology in the Bitcoin framework, 

widespread adoption is hindered by the absence of established 

best practices. 

 

Both technical and non-technical skills are essential for 

effective and comprehensive testing. Addressing this challenge 

is complex, as acquiring additional skills, such as proficiency 

in the latest smart contract development languages or 

understanding best practices in implementing blockchain smart 

contracts, can be costly. Furthermore, even with successful 

smart contract implementation, testing remains highly 

specialized and demands experience and a meticulous testing 

approach. 

 

E. Limited Tooling 

The testing tools aim to execute the system being tested, 

ensuring consistency in performance and thereby validating the 

effectiveness of the testing process. In this context, the system 

under test refers to the blockchain application, which demands 

considerable effort and lacks comprehensive automation 

support. Choosing the appropriate tool is a critical decision. 

 

To tackle this challenge, there are some tools with non-

proprietary software implementations available. While these 

tools may not perfectly replicate real-world scenarios, they can 

still effectively test certain high-level transaction 

functionalities. Ideally, an integrated development environment 

offering essential modules, compilers, testing frameworks, and 

analytical tools is required. However, existing variations of 

these tools fall short of meeting developers' needs [32]. 

 

Anna Vacca [18] explores how conventional testing techniques 

like mutation testing, unit and integration testing, and 

regression testing need to be tailored to suit the distinctive 

interaction and architecture of smart contracts. There is a 

demand for the development of testing tools specifically 

designed for smart contracts to effectively identify 

vulnerabilities and bugs in the source code. Specialized tools, 

particularly for mutation testing, are essential for ensuring the 

quality of smart contracts. 

 

V. APPROACHES TO TESTING 

In the modern era, there is an elevated level of trust worldwide, 

primarily due to our growing reliance on software to execute a 

wide range of transactions. Blockchain technology has 

heightened visibility within these transaction networks, 

enabling asset information that was once confined to individual 

owners to be shared among all stakeholders. As a result, testing 

teams are facing an unprecedented demand to ensure top-notch 

quality on their first attempt, all while minimizing any negative 

impact on team productivity during the testing process. 

 

The importance of testing is underscored by the rise of smart 

contracts in business. Functioning as APIs on blockchain 

networks, smart contracts are immutable once deployed, 

making thorough testing crucial for accuracy and reliability. 

Detecting defects in production systems necessitates creating 

and deploying new versions, with manual data transfer posing 

logistical challenges. Furthermore, the immutable nature of 

smart contracts precludes updates, amplifying the responsibility 

of the quality assurance team to ensure accuracy from the start. 

 

The rise of DevOps has transformed the role of testers [33], with 

a greater emphasis on continuous testing. A robust strategy for 

continuous testing involves testing at the earliest stages in 

production environments (shift-left), integrating testing into 
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every deployment process (shift-right), and employing 

continuous testing throughout the software lifecycle 

(automation). Given the criticality of software quality, various 

testing approaches are employed: 

 

A. Consensus 

In trusted business networks, transactions are confirmed and 

recorded using consensus mechanisms such as proof-of-stake, 

multi-party signatures, and PBFT algorithms [34]. Regardless 

of the consensus method, validated data serves as the definitive 

record. Testers must ensure consistency and integrity among 

stakeholders, considering the dynamic nature of nodes and their 

impact on data flow and blockchain performance. Service 

virtualization is valuable for simulating real-world scenarios by 

controlling component interactions via APIs.  

 

For example, reintegrating a party may require a brief data 

update, affecting verification speed with more nodes. A 

thorough testing strategy covering various scenarios is essential 

to prevent system breakdowns. 

 

B. External Integration 

In many contemporary business contexts, blockchain 

technology is strategically integrated into specific stages of the 

overall process [35]. This integration necessitates seamless 

interaction with other interconnected components within the 

system. For instance, the blockchain may trigger events in 

external systems, or conversely, external events may trigger 

actions within the blockchain. Additionally, blockchain 

operations may rely on external services or routines to execute 

certain functions effectively. A robust testing strategy entails 

meticulous examination of every interaction point between the 

blockchain ecosystem and external systems to ensure the 

accurate flow of data at each junction.  

 

For instance, when submitting a completed transaction to an 

API, validation against predefined rules, consensus attainment, 

and ledger updates must all be thoroughly verified, not solely 

confirmation receipts. Neglecting validation at any stage poses 

a risk of ledger corruption and the dissemination of inaccurate 

information. Given that most blockchains utilize REST-based 

APIs for interactions, comprehensive testing is imperative to 

guarantee seamless integration. 

C. Functional Testing 

Smart contracts are code that automatically executes with each 

transaction based on predefined rules. It is important to 

prioritize testing the functionality of the contract over focusing 

solely on the data. Ensuring functional correctness, along with 

validating the data, is crucial. A recommended testing strategy 

emphasizes the importance of functional tests to ensure that 

terms and conditions are correctly programmed into the 

contract and activated by appropriate data inputs [36]. It is 

advisable to perform unit tests on each condition independently, 

followed by integration testing, to evaluate the complete logic 

of the smart contract as a whole. Moreover, due to their 

immutable nature, it is considered best practice to test smart 

contracts on a simulated blockchain or virtualized service 

before deployment. 

 

D. Performance Testing 

Performance can be evaluated in two primary ways: one 

approach involves assessing it from the perspective of external 

end users interacting with a blockchain solution, while the other 

utilizes feedback obtained from internal system interfaces. It's 

important to perform performance testing against the services 

offered by the blockchain ecosystem to assess the impact of 

potential failures. Monitoring performance during high-risk 

situations such as data updates across nodes, node 

synchronization, and consensus processes is crucial, as these 

scenarios are heavily influenced by data location and latency.  

 

Automated performance testing should be used to evaluate 

scalability in all these cases [37]. Testers should prioritize speed 

while ensuring that horizontal and vertical scaling do not 

compromise performance. In applications like Bitcoin, where 

individuals freely open digital wallets and engage in exchanges, 

continuous performance testing and monitoring are essential. 

Testers should create scenarios that cover all aspects of the 

blockchain ecosystem, including compound testing 

. 

E. Security Testing 

The rise of blockchain technology has ushered in a new era 

where all participants have equal roles in securing the data and 

network. Despite its foundation on security and immutability, 

blockchain remains vulnerable to security risks [38]. Those who 

own private blockchains should be cautious about how their 

existing business solutions interact with blockchain security. 

Smart contracts pose an even greater challenge for regulators or 

consensus bodies, as they are deeply integrated into every 

transaction on the blockchain.  

 

Testers must scrutinize both the implementation code for 

security deficiencies and the distributed architecture for 

potential threats that could result in denial-of-service attacks or 

the exploitation of vulnerabilities. Proper modeling and 

anticipation of these threats are necessary to develop effective 

mitigation strategies and detailed fixes. Implementing 

automated security testing provides a more reliable method for 

ensuring integrity within diverse applications using ledger 

systems; fuzz testing, aimed at automating vulnerability 

discovery by intentionally injecting faults into the system, can 

also be beneficial. Integrating security testing throughout 

DevOps processes across implementation deployments will 

offer comprehensive protection. 

 

VI. CONCLUSION 

         In the dynamic landscape of blockchain technology and 

the widespread integration of smart contracts across various 

sectors, it's imperative to evaluate the current technological 

status and identify areas ripe for improvement. To this end, our 
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survey on smart contract testing aims to delve into the 

methodologies, practices, and tools utilized to address 

challenges in smart contract development. Despite 

advancements, certain issues persist, necessitating further 

research to adapt traditional testing methodologies to 

blockchain-based development. Moreover, enhancing 

programming languages for smart contract coding and 

providing guidelines for streamlined development processes are 

crucial. Additionally, specialized testing tools and frameworks 

are essential, regardless of the language or platform used for 

smart contract development. 

Successful adoption of blockchain methodologies requires a 

meticulous approach to design and validation. While testing 

mechanisms may mirror those of conventional systems, specific 

attention must be paid to tailor test strategies in alignment with 

the principles and implementation constructs of the domain. 
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