
Informatics Bulletin, Faculty of Computers and Artificial Intelligence, Helwan University

Published Online Vol 7 Issue 2, July 2025

(https://fcihib.journals.ekb.eg)

Abstract—The proliferation of blockchain technology signifies a

revolutionary shift in the management of online transactions,

offering unparalleled security and efficiency through immutable,

peer-to-peer decentralized networks. Despite its transformative

potential, blockchain introduces significant complexities and

testing challenges, particularly within the realm of smart

contracts. This paper surveys the landscape of smart contract

testing, outlining the critical challenges and the necessity for

specialized testing tools and methodologies. Through a

comprehensive review of existing literature and practical

approaches, this study emphasizes the importance of rigorous

testing protocols to ensure the reliability and security of

blockchain applications. Key areas of focus include transaction

cost optimization, defect identification, and the development of

robust testing frameworks, all aimed at maintaining high-quality

standards in this rapidly evolving technological domain.

Index Terms— Blockchain, Smart Contract, Smart Contract

Testing, DevOps.

I. INTRODUCTION

Digital transactions are rapidly gaining traction globally due to

enhanced security, ease of use, and speed. Blockchain

technology provides a secure and trustworthy platform for

managing online transactions without relying on intermediaries

[1]. As more individuals shift towards digital transactions,

security becomes a critical concern. Blockchain and smart

contracts have attracted significant attention from various

sectors, including financial institutions and regulatory bodies.

The adoption of blockchain is expected to continue growing

exponentially in the coming years. This technology enables

secure and transparent transactions, fostering trust among users.

Organizations are investing heavily in blockchain to capitalize

on its transformative potential.

A blockchain functions as a decentralized ledger distributed

across a public or private network of peers where information

is shared [2], replicated, and synchronized. This ledger

permanently records the history of asset exchanges among

network members in a sequential manner. Each transaction is

timestamped and assigned a unique cryptographic signature for

security. Network nodes collectively agree on a consensus

protocol to validate and update ledger records, removing the

need for intermediary entities like financial institutions. Once

data is stored on the blockchain, it remains immutable. Verified

transactions are grouped into blocks and linked to previous

blocks, forming a chain. Blockchain technology offers vast

potential to revolutionize digital transaction management.

Blockchain technology offers a fresh perspective on software

development, as decentralization and anonymity among

network nodes create distinct challenges for testing [2].

Traditional testing methods may not be adequate in light of

these complexities. Additionally, the unchangeable nature of

the blockchain implies that errors in the production system

could necessitate extensive code modifications. Consequently,

it is essential to employ suitable testing techniques and

methodologies. This paper seeks to delineate the hurdles and

propose approaches for testing blockchain applications to

uphold superior quality standards.

This paper provides a comprehensive survey of the current

methodologies, tools, and challenges associated with the testing

and analysis of smart contracts in blockchain-based

applications. The unique features of blockchain, such as

distributed consensus mechanisms and the unchangeable nature

of the ledger, introduce complexities that traditional testing

methods cannot adequately address. This study highlights the

need for specialized testing tools and techniques to ensure high-

quality software delivery in blockchain applications. We delve

into various testing strategies, including static and dynamic

testing, functional and non-functional testing, and mutation

testing, specifically tailored for smart contracts. By examining

existing tools and methodologies, such as EVMFuzz and

Contract Fuzzer, and reviewing recent advancements in the

field, our contribution underscores the importance of

developing a blockchain-oriented software development

lifecycle to meet the evolving demands of this transformative

technology.

Blockchain and Smart Contract Development:

A Survey of Testing Challenges and Approaches

Ramadan Nasr1,*, Mohamed Ibrahim Marie1, Ahmed El Sayed Yakoub1

1Information System , Computers and Artificial Intelligence , Helwan , Cairo ,Egypt

ramadannasr40@fci.helwan.edu.eg, mohamedmarie@yahoo.com, eng_ahmedyakoup@yahoo.com

Informatics Bulletin, Helwan University, Vol 7 Issue 2, July 2025

Table 1. Examples of most popular blockchains

Platform

Type Smart Contract

Language

Consensus

Mechanism

Main Application Contexts Related Projects

Ethereum Public Solidity,
Vyper

Proof of Work Financial,
Asset trading

DAI
Gitcoin

Cryptokitties

Quorum Private Solidity,
Vyper

Proof of Authority Financial, Supply Chain and
Logistics

Liink
Komgo

Project Ubin

Hyperledger Fabric Public,

Private

Java, Go,

JavaScript

Proof of Work Supply chain,

Trade finance,
Stock trading

IBM Food Trust

Everledger diamond
blockchain

Hyperledger

Sawtooth

Private Rust, Go

Python, Java

PoET, PBFT, RAFT Supply chain, Provenance

Tracking

Sawtooth Private UTXO

Sawtooth Marketplace

NEM Private Java Proof of

Importance

Augmented reality,

Advertising and marketing,

Banking

DigitCoin

Bankera

Pantos

Stellar Public Solidity,
JavaScript, Java,

Go

Stellar Consensus
Protocol

Remittance StellarX
Tempo

TillBilly

Corda Private DAML,
Kotlin, Java

Validity and
Uniqueness

Energy trading, Insurance,
Retail markets

Energy Block Exchange
TradeCloud

MonetaGo

The subsequent sections of the paper are structured as follows:

Section II provides background material on blockchain smart

contracts as well as software testing. In Section III, the focus

shifts to smart contract testing. Section IV outlines various

challenges associated with smart contract testing. Section V

provides approaches to testing, while Section VI offers

concluding remarks. Finally, Section VII presents references.

II. BACKGROUND

A. Blockchains And Smart Contracts

Blockchains serve as the foundational infrastructure for digital

currencies, featuring blocks secured against tampering or

modification, with each block containing data referencing the

previous one and a timestamp, ensuring data integrity [3].

Initially, first-generation blockchains like Bitcoin were

primarily focused on facilitating cryptocurrency transactions,

while second-generation blockchains like Ethereum expanded

their scope to enable the development and execution of software

by blockchain participants [4].

Blockchain networks are broadly categorized into public and

private types: public, or permissionless, blockchains allow all

participants to modify the ledger's state, prioritizing

transparency but potentially compromising privacy. In contrast,

private, or permissioned, blockchains restrict transactional

participation to authorized entities, ensuring transactional

privacy. In this section, we'll delve into the origins of

blockchain and the development of smart contracts, along with

highlighting the significance of software testing within the

realm of smart contract development. Table 1 illustrates a

comparison between the most commonly used blockchain

Platforms [5].

The table above illustrates a comparison of the most popular

blockchain platforms and their smart contracts, including their

primary application context and associated projects.

Blockchain technology provides the distinctive ability to

incorporate smart contracts into transactions, facilitating the

execution of code in a decentralized and secure setting. Smart

contracts, essentially code that executes automatically when

certain conditions are met, utilize the permanence and

resistance to censorship that are fundamental to blockchain

systems.

These contracts allow for the automation of business operations

across various organizational borders, ensuring transparency

and reliability. Developers encode business rules into smart

contracts to govern transaction outcomes, such as payment

execution upon successful delivery or fund reversal in case of

delays or discrepancies. Smart contracts operate autonomously,

executing predefined actions without human intervention,

thereby enhancing efficiency and trust in blockchain-based

legal agreements.

The figure above outlines the functionality of a prototype smart

contract. This contract is designed to automate rent payments,

where the tenant initiates fund deposits into the contract.

Subsequently, the landlord can withdraw these funds

periodically, typically on a monthly basis. Additionally, the

contract maintains a comprehensive record of all rent

transactions, ensuring transparency and accountability for both

parties involved.

Informatics Bulletin, Helwan University, Vol 7 Issue 1, January 2025

Fig. 1. Example of a Smart Contract.

A. Blockchain As A Service (Baas)

Blockchain as a Service (BaaS) is a cloud-based solution that

allows companies to develop, test, and deploy bespoke

blockchain applications without the need for initial capital

investment. This solution offers services such as consensus

mechanisms and validation protocols, allowing businesses to

develop their own solutions. BaaS enables businesses to

explore blockchain technology and concentrate on developing

applications, letting customers and developers create

blockchain extensions for current applications across various

industries, thereby unlocking the potential of this

transformative technology.

Leading enterprise software providers such as IBM, Microsoft,

and SAP have initiated the rollout of their cloud-based

blockchain offerings. For instance, IBM unveiled IBM

Blockchain in March 2017, marking the debut of an enterprise-

grade blockchain service built on the Linux Foundation's

Hyperledger Fabric version 1.0.

This service empowers developers to swiftly construct and

deploy secure blockchain networks on the IBM Cloud,

leveraging the robustness of IBM Linux ONE [6], renowned for

its unparalleled security features. Similarly, Microsoft

introduced the Coco Framework, an open-source solution

tailored to create high-scale, confidential blockchain networks

meeting enterprise demands [7].

Coco's unique ledger construction approach ensures scalability,

distributed governance, and heightened confidentiality without

compromising on security and immutability. Furthermore,

Microsoft offers Blockchain as a Service (BaaS), a cloud-based

platform on Microsoft Azure, providing organizations with a

rapid, cost-effective, and low-risk solution. SAP also launched

SAP Leonardo, a digital innovation system, in May 2017. This

platform seamlessly integrates cutting-edge technologies,

including pre-built blockchain capabilities and the SAP Cloud

Platform Blockchain service, empowering customers to

redefine their business operations effectively.

B. Importance of Software Testing

The main aim of software development is to create products that

meet customer needs effectively. As developers, it's crucial to

embrace and utilize advanced technologies and programming

languages to ensure product quality and value. The software

development life cycle (SDLC) offers a standardized process

for creating high-quality software, with testing playing a vital

role [8]. Testing is essential for delivering quality products to

customers. Traditionally, testing occurred towards the end of

the coding phase or before product delivery. However, starting

testing early in the development cycle can reduce defects and

minimize rework costs. Principle 3 of software testing standards

[9] emphasizes early testing, stating: “Principle 3: Early testing:

Testing activities should start as early as possible in the

software or system development life cycle and should focus on

defined objectives. Involving the testing team from the

beginning, during requirements and analysis phases, promotes

a better understanding of the product and significantly reduces

the cost of quality by identifying defects early in the

development life cycle.”

As mentioned in "Inspecting Requirements" by Wiegers [10],

industry data indicates that around 50% of product defects

originate from requirement elicitation. Additionally,

approximately 80% of coding or design revisions result from

prerequisite faults. "Software Testing Techniques" by Beizer

[11] offers a comprehensive compilation of testing

methodologies, with the author noting that designing tests is

highly effective in preventing bugs.

This underscores the significance of early testing, as detecting

errors early in the process is crucial. Smart contract testing

requires efficient test design to assess and validate contracts

before deployment, emphasizing the importance of thorough

testing practices.

Informatics Bulletin, Helwan University, Vol 7 Issue 1, January 2025

C. Types and methodologies of Software Testing

Testing seeks to assess different aspects of software to verify

that it meets its design and requirements as specified by the

client. The software testing process involves a series of

activities that include executing the software code and

evaluating its various properties to identify any errors present.

However, it is limited in its ability to detect the absence of

certain features due to the constraints of time and resources,

resulting in incomplete testing. In the software development

life cycle (SDLC), there are four specific levels of testing: unit

testing, integration testing, acceptance testing, and System

testing.

• Unit testing ensures the proper functioning of

individual software code modules.

• Integration testing aims to evaluate the functionality of

units when integrated.

• System testing verifies that the end-to-end system

meets its predefined requirements.

• Acceptance testing is conducted to ensure that the

system aligns with business requirements and meets

the criteria for delivery to end-users.

Additionally, there are various kinds of software testing [12],

which can range from straightforward static analysis to

dynamic methods, as depicted in Figure 2. Static analysis refers

to testing that doesn't involve executing the program but rather

examines the structure, syntax, and data flow of the source

code.

Common methods for static analysis include inspections,

reviews, and step-by-step analysis. Static analysis can be used

alongside procedural verification techniques to validate the

accuracy of the software. Conversely, dynamic testing involves

executing the program, processing inputs, and generating

outputs.

Experiments are often conducted to evaluate test data and

results, with the aim of confirming whether actual results

conform to expected outcomes. Dynamic testing techniques can

also encompass both functional and non-functional testing.

Functional testing processes are conducted to verify the

accuracy of a product's functional specifications. This type of

testing is also referred to as discovery testing. Specific white-

box testing techniques, such as interface testing and mutation

testing, are employed in this context.

Non-functional testing covers various testing methods designed

to evaluate non-functional requirements like usability,

performance, security, and compliance. The goal is to verify if

system components meet the specified requirements. Non-

functional testing is designed to evaluate the system's ability to

handle user interactions while meeting nonfunctional

parameters that are typically not covered by functional testing

approaches.

III. SMART CONTRACT TESTING

Song et al. [13] presented a novel approach to detecting

vulnerabilities in Ethereum smart contracts. The authors

propose a multi-layer perceptron (MLP) based detection tool

that leverages both opcode and control flow graph (CFG)

features. This tool integrates static analysis and machine

learning to identify various vulnerabilities such as reentrancy,

arithmetic issues, unauthorized sends, and timestamp

dependencies. The methodology includes extracting opcodes,

simplifying them for better feature extraction, and using

trigrams for n-gram analysis to capture contextual information.

Driessen et al. [14] introduced SOLAR (Solidity Analyzer), a

tool designed to test and verify the correctness of Solidity smart

contracts. It emphasizes the importance of security and

correctness in smart contracts due to their immutable nature

once deployed on the blockchain. The motivation behind

developing SOLAR stems from the numerous security

vulnerabilities and bugs found in existing smart contracts,

which can lead to significant financial losses. The paper

highlights notable examples of such vulnerabilities and their

consequences.

Tamer et al. [15] introduced a new tool called DLVA , designed

to detect vulnerabilities in Ethereum smart contracts using deep

learning techniques. DLVA leverages deep learning to analyze

Ethereum smart contracts without relying on predefined

patterns, manual feature engineering, or expert rules.

In [16] the authors propose a novel tool, SoliDetector, which

leverages a knowledge graph to enhance the detection of defects

in Solidity smart contracts. This approach outperforms existing

tools like Mythril, Slither, and SmartCheck by maintaining

higher precision and lower false-negative rates across various

defect types. The knowledge graph approach allows

SoliDetector to manipulate code information using SPARQL

queries, achieving superior defect localization and scalability.

Experimental results demonstrate that SoliDetector not only

achieves a precision of 97.93% but also operates efficiently,

requiring significantly less time to analyze smart contracts

compared to other tools.

Sangharatna et al. [17] SmartMuVerf, a novel approach to

mutation verification for smart contracts, particularly focusing

on Ethereum. The goal is to enhance the testing and verification

of smart contracts, which are critical in managing high-value

assets and ensuring the correct execution of decentralized

applications on blockchain platforms.

Anna Vacca [18] conducted an extensive investigation into

different methods, software tools, and obstacles related to

blockchain smart contracts development. The comprehensive

study encompassed six main areas: testing of smart contracts,

evaluation of smart contract code, metrics and security for

smart contracts, performance of decentralized applications, and

blockchain applications.

Informatics Bulletin, Helwan University, Vol 7 Issue 1, January 2025

Testing serves not only to achieve code coverage but also to

identify defects or bugs. Chen et al. [19] assert that smart

contracts, being immutable, necessitate being devoid of defects.

Through an analysis of various real-world smart contracts and

related literature, the authors identified 20 types of malicious

defects. The removal of these defects enhances the integrity of

smart contracts. Additionally, the study outlines the

repercussions stemming from contract defects, thereby aiding

developers in recognizing fault indicators and taking

appropriate corrective actions.

Zhang et al. [20] discussed the creation of efficient test cases

using data flow analysis from a control flow graph. Their

strategy employs a genetic algorithm to sequentially optimize

dynamic testing for smart contracts. This process begins with

the creation of a control flow graph from the source code, which

is then examined to determine critical statements and

definition-use pairs specific to Solidity programs. Ultimately,

they utilize a genetic algorithm combined with a function to

generate test cases by calculating these definition-use pairs.

Wang et al. [21] introduced a novel multi-objective approach,

incorporating randomness and NSGA-II, aimed at generating

cost-effective test suites. While numerous researchers have

proposed various testing and verification methods for smart

contracts, little emphasis has been placed on factors such as

transaction costs, duration (time taken to execute transactions),

and the coverage of untested code branches. Addressing these

concerns, Wang et al. [21] focused on achieving cost-effective

test suite generation for smart contracts through the

implementation of the aforementioned multi-objective

approaches. Additionally, the authors indicated that

maximizing mutation-killed ability during test-suite generation

remains an area for future investigation.

Several research studies have proposed testing methodologies

for smart contracts using fuzzy approaches to detect faults or

security vulnerabilities. Tools like EVMFuzz [22],

ContractFuzzer [23], and Fuse [24] have been developed for

this purpose. EVMFuzz [22] focuses on identifying weaknesses

in Ethereum Virtual Machines (EVM) by employing

differential fuzz testing. The core idea involves continuously

generating smart contracts and feeding them into the EVM to

uncover as many unpredictable outcomes as possible, aiding in

vulnerability detection through output cross-referencing. The

tool generates smart contracts with predefined mutators and

utilizes dynamic priority scheduling. Notably, EVMFuzz has

successfully uncovered several previously unknown security

bugs.

A tool known as Contract Fuzzer [23] has been designed to test

the reliability of smart contracts. It generates fuzzing input

based on the specific application binary interface of smart

contracts, then analyzes and logs any identified vulnerabilities.

Out of approximately 6991 Smart Contracts tested, this tool

detected over 459 flaws with high accuracy, including

significant issues such as "The DAO" bug and the Parity Wallet

bug, which resulted in substantial financial losses amounting to

millions of dollars.

The majority of researchers employed Ethereum technology for

creating tests for smart contracts. Within each category

examined, the authors outlined several unresolved issues. Their

analysis on the literature pertaining to smart contracts and

blockchain applications indicates a requirement for a

development life cycle based on blockchain technology.

Fig. 2. Overview of Software Testing Types [12]

Informatics Bulletin, Helwan University, Vol 7 Issue 1, January 2025

TABLE 2. The Advantages and

Drawbacks of the research works examined

Paper Advantages Drawbacks

[13] - The use of a Multi-Layer Perceptron (MLP) model

allows for the dynamic training of the tool to newer

smart contract bugs and Solidity versions. This

approach helps in reducing the false positive rate and

adapts to the evolving nature of smart contracts.

- The use of synthetic data generation methods like SMOTE for

introducing vulnerabilities into the training dataset may not

accurately represent real-world scenarios. This can lead to

imbalances in the training dataset and affect the overall

performance of the model.

[14] - Automatic generation of high-coverage test suites.

- Simulates various blockchain scenarios for thorough

testing.

- Supports extensions for more algorithms and

techniques.

- Techniques like formal verification can be resource-intensive.

- Reliance on developer-provided models can limit

effectiveness.

[15] - The authors use training algorithms that are robust

enough to cope with problems like mislabeled

contracts and increase the analysis capabilities from

source code to bytecode in terms of speed and

accuracy.

- While it gives speed, there were no such discussions about

whether it is scalable in DLVA when deployed and expanded at

a large scale across thousands of nodes or whether the tool can

manage many contracts at a time. This includes potential

bottlenecks in data processing and analysis.

[16] - The SoliDetector tool achieves a high precision rate

of 97.93%, indicating its accuracy in identifying

defects without generating a significant number of

false positives.

- The knowledge graph approach allows for scalable

analysis and is capable of handling a large number of

smart contracts without compromising performance.

- The authors acknowledge the need for future improvements,

such as incorporating execution information to enrich the

knowledge graph, which suggests that the current

implementation is still evolving and may require further

refinement to handle more complex scenarios.

[17]

- Proposes a significant improvement in the testing of

smart contracts. The authors represent a novel

approach to mutation testing, which could be helpful in

ensuring the solidity and security of smart contracts

before deploying them onto a blockchain.

- SmartMuVerf focuses on logical and relational operator

mutations in the current implementation but does not consider

the other types of faults that may cause a substantial contribution

to the lack of robustness in smart contracts, such as state

management, arithmetic operations, and external calls.

[18] - The authors identified several open challenges within

six principal categories, suggesting the need for further

research and development to address these issues

effectively.

- There is a demand for a blockchain-oriented software

development life cycle.

- There is a need to create specialized tools for specific types of

testing, such as mutation testing, which are essential for ensuring

the quality of smart contracts.

[19] - Improved robustness of smart contracts. - The defect dataset can be used in developing smart contract

defect detection tools.

[20] - Proposed ADF-GA for Solidity based Ethereum

smart contract programs that generate test cases by

using all-uses data flow and genetic algorithms,

achieves more coverage and has less number of replays

in the genetic algorithm.

- Requires further optimization in selecting

and the operation of mutants for generating test cases.

- Needs to investigate more suitable methods for the evaluation

of test cases.

- There are restrictions executing in the environment of smart

contracts for performing dynamic testing, which requires a

solution.

[21]

- Provides cost efficient test cases - Requires maximizing the ability of killed mutants during the

test-suite generation.

Informatics Bulletin, Helwan University, Vol 7 Issue 1, January 2025

[22] - EVMFuzz automates the generation of test cases,

significantly reducing manual effort and increasing

testing efficiency.

- The framework successfully identified numerous

inconsistencies in gas usage and opcode sequences

among different EVM implementations, revealing

hidden vulnerabilities that could lead to serious

security issues.

- While EVMFuzz is effective in identifying inconsistencies, it

may also produce false positives and negatives, necessitating

further manual analysis to confirm the findings.

- Some generated seed contracts may contain rare situations,

such as illegal data types or infinite loops, which certain EVM

platforms may not handle correctly, leading to potential crashes

or erroneous outputs

[23] - ContractFuzzer defines new test oracles that can

precisely detect real-world vulnerabilities in smart

contracts.

- ContractFuzzer automatically generates inputs based

on the API interfaces of smart contracts, making the

testing process more efficient and less prone to human

error.

- The immutability of smart contracts makes updating them after

deployment difficult, which can delay the application of security

fixes.

[24]

- Fuse has shown high true positive rates (96-100%) in

detecting various vulnerability classes.

- Provides comprehensive test reports and

visualizations to aid developers in understanding

vulnerabilities.

- Encrypted submission of contracts and test reports

ensures privacy and security.

- Offline analysis can be inefficient, and online analysis may

slow down smart contract execution.

- Integration of Dapp testing with fuzz testing of smart contracts

is still under study and not fully realized.

Table 2 presents a synthesis of the Advantages and Drawbacks

of the research works examined in this literature review. In the

table above, we highlighted the evolution and focus of research

in blockchain and smart contract development, emphasizing the

following:

o Testing methodologies

o Vulnerability detection

o The importance of rigorous software testing practices

IV. CHALLENGES IN TESTING BLOCKCHAIN SMART

CONTRACT

This section outlines the various triggers inherent in testing

smart contract executions. The main challenges are:

A. Public vs Private blockchain

The scope and thoroughness of testing are greatly affected by

whether the implementation is carried out on a public platform

such as Ethereum or on a customized platform designed

specifically for an organization or consortium [25, 26]. Testing

private blockchains tends to be more straightforward due to the

controlled environment, which facilitates the simulation of

different scenarios and allows for internal testing using

conventional methods.

A detailed test strategy can be developed due to the customized

functionality. However, testing becomes more complex with

public platform implementations. Public blockchains lack

limits on node participation, face challenges in achieving

consensus [27], may experience transaction speed reductions,

hard fork occurrences, and other issues, making it challenging

to design comprehensive test strategies and cases.

B. Security Vulnerabilities

The widespread adoption of blockchain can be attributed to the

inherent security it offers. Alongside significant security

benefits, there are also certain challenges that need attention.

Failure to address these challenges appropriately could lead to

severe consequences, particularly within the finance industry.

Whether dealing with public or private blockchains, a key

challenge lies in ensuring the security of the network

architecture through thorough testing. Nodes within a network

may exhibit unresponsiveness or sporadic activity for

questionable reasons. Comprehensive testing involving various

scenarios is imperative to safeguard the consensus process and

maintain ledger consistency.

In the realm of private blockchain systems, there may be

occasions where transaction reversibility is essential, perhaps

due to attempted theft or other unforeseen circumstances. In

such instances, it becomes imperative to conduct thorough

validation checks to uphold the integrity of the distributed

ledger. Testing procedures must ensure that transactional data

remains intact throughout such processes. Private blockchains,

like other distributed architectures, rely on network

communication for accessing and updating transactional data,

rendering them susceptible to denial-of-service and identity-

based attacks [28].

Consequently, meticulous testing is indispensable to mitigate

these risks and fortify the system against potential

vulnerabilities. Despite blockchain technology's overarching

Informatics Bulletin, Helwan University, Vol 7 Issue 1, January 2025

focus on security, it encounters challenges that may not be

entirely addressed within existing test frameworks and

methodologies.

C. Decentralized Environment

Proper testing in blockchain implementations relies heavily on

having a test environment that mirrors the production setup

[29]. Access to a test platform resembling the actual

deployment is crucial; without it, considerable resources and

time may be required to replicate the environment.

Open-source implementations offer distinct test instances that

mimic real scenarios, facilitating comprehensive testing of

transaction functionalities. Private blockchain setups demand

tailored test environments to accommodate customized features

effectively.

As blockchain integration becomes more prevalent within

existing business frameworks, integration testing assumes

greater importance. Rather than standalone development,

blockchain is increasingly being integrated into pre-existing

applications. Ensuring seamless interaction between blockchain

implementations and existing systems poses a significant

challenge.

Testing teams must thoroughly understand interface points and

communication channels to maintain consistency across

processes. Providing access to application programming

interfaces (APIs) used for communication enables quality

assurance teams to validate proper integration between legacy

systems and blockchain components.

D. Lack of Standardization

The lack of understanding of innovation and inadequate skills

or experience in designing and developing smart contracts are

key factors. Furthermore, the lack of standardization [30] in

terminology leads to decreased clarity, quality, and efficiency.

Establishing accepted practices for developing test suites

through open-source collaboration would greatly benefit smart

contract implementation and enhance product quality.

Blockchain, being a relatively new technology, requires a deep

understanding of its concepts and potential to be effectively

applied in various domains, such as healthcare or supply chain

management.

Despite being introduced by Satoshi Nakamoto [31] in 2008 as

a critical underlying technology in the Bitcoin framework,

widespread adoption is hindered by the absence of established

best practices.

Both technical and non-technical skills are essential for

effective and comprehensive testing. Addressing this challenge

is complex, as acquiring additional skills, such as proficiency

in the latest smart contract development languages or

understanding best practices in implementing blockchain smart

contracts, can be costly. Furthermore, even with successful

smart contract implementation, testing remains highly

specialized and demands experience and a meticulous testing

approach.

E. Limited Tooling

The testing tools aim to execute the system being tested,

ensuring consistency in performance and thereby validating the

effectiveness of the testing process. In this context, the system

under test refers to the blockchain application, which demands

considerable effort and lacks comprehensive automation

support. Choosing the appropriate tool is a critical decision.

To tackle this challenge, there are some tools with non-

proprietary software implementations available. While these

tools may not perfectly replicate real-world scenarios, they can

still effectively test certain high-level transaction

functionalities. Ideally, an integrated development environment

offering essential modules, compilers, testing frameworks, and

analytical tools is required. However, existing variations of

these tools fall short of meeting developers' needs [32].

Anna Vacca [18] explores how conventional testing techniques

like mutation testing, unit and integration testing, and

regression testing need to be tailored to suit the distinctive

interaction and architecture of smart contracts. There is a

demand for the development of testing tools specifically

designed for smart contracts to effectively identify

vulnerabilities and bugs in the source code. Specialized tools,

particularly for mutation testing, are essential for ensuring the

quality of smart contracts.

V. APPROACHES TO TESTING

In the modern era, there is an elevated level of trust worldwide,

primarily due to our growing reliance on software to execute a

wide range of transactions. Blockchain technology has

heightened visibility within these transaction networks,

enabling asset information that was once confined to individual

owners to be shared among all stakeholders. As a result, testing

teams are facing an unprecedented demand to ensure top-notch

quality on their first attempt, all while minimizing any negative

impact on team productivity during the testing process.

The importance of testing is underscored by the rise of smart

contracts in business. Functioning as APIs on blockchain

networks, smart contracts are immutable once deployed,

making thorough testing crucial for accuracy and reliability.

Detecting defects in production systems necessitates creating

and deploying new versions, with manual data transfer posing

logistical challenges. Furthermore, the immutable nature of

smart contracts precludes updates, amplifying the responsibility

of the quality assurance team to ensure accuracy from the start.

The rise of DevOps has transformed the role of testers [33], with

a greater emphasis on continuous testing. A robust strategy for

continuous testing involves testing at the earliest stages in

production environments (shift-left), integrating testing into

Informatics Bulletin, Helwan University, Vol 7 Issue 1, January 2025

every deployment process (shift-right), and employing

continuous testing throughout the software lifecycle

(automation). Given the criticality of software quality, various

testing approaches are employed:

A. Consensus

In trusted business networks, transactions are confirmed and

recorded using consensus mechanisms such as proof-of-stake,

multi-party signatures, and PBFT algorithms [34]. Regardless

of the consensus method, validated data serves as the definitive

record. Testers must ensure consistency and integrity among

stakeholders, considering the dynamic nature of nodes and their

impact on data flow and blockchain performance. Service

virtualization is valuable for simulating real-world scenarios by

controlling component interactions via APIs.

For example, reintegrating a party may require a brief data

update, affecting verification speed with more nodes. A

thorough testing strategy covering various scenarios is essential

to prevent system breakdowns.

B. External Integration

In many contemporary business contexts, blockchain

technology is strategically integrated into specific stages of the

overall process [35]. This integration necessitates seamless

interaction with other interconnected components within the

system. For instance, the blockchain may trigger events in

external systems, or conversely, external events may trigger

actions within the blockchain. Additionally, blockchain

operations may rely on external services or routines to execute

certain functions effectively. A robust testing strategy entails

meticulous examination of every interaction point between the

blockchain ecosystem and external systems to ensure the

accurate flow of data at each junction.

For instance, when submitting a completed transaction to an

API, validation against predefined rules, consensus attainment,

and ledger updates must all be thoroughly verified, not solely

confirmation receipts. Neglecting validation at any stage poses

a risk of ledger corruption and the dissemination of inaccurate

information. Given that most blockchains utilize REST-based

APIs for interactions, comprehensive testing is imperative to

guarantee seamless integration.

C. Functional Testing

Smart contracts are code that automatically executes with each

transaction based on predefined rules. It is important to

prioritize testing the functionality of the contract over focusing

solely on the data. Ensuring functional correctness, along with

validating the data, is crucial. A recommended testing strategy

emphasizes the importance of functional tests to ensure that

terms and conditions are correctly programmed into the

contract and activated by appropriate data inputs [36]. It is

advisable to perform unit tests on each condition independently,

followed by integration testing, to evaluate the complete logic

of the smart contract as a whole. Moreover, due to their

immutable nature, it is considered best practice to test smart

contracts on a simulated blockchain or virtualized service

before deployment.

D. Performance Testing

Performance can be evaluated in two primary ways: one

approach involves assessing it from the perspective of external

end users interacting with a blockchain solution, while the other

utilizes feedback obtained from internal system interfaces. It's

important to perform performance testing against the services

offered by the blockchain ecosystem to assess the impact of

potential failures. Monitoring performance during high-risk

situations such as data updates across nodes, node

synchronization, and consensus processes is crucial, as these

scenarios are heavily influenced by data location and latency.

Automated performance testing should be used to evaluate

scalability in all these cases [37]. Testers should prioritize speed

while ensuring that horizontal and vertical scaling do not

compromise performance. In applications like Bitcoin, where

individuals freely open digital wallets and engage in exchanges,

continuous performance testing and monitoring are essential.

Testers should create scenarios that cover all aspects of the

blockchain ecosystem, including compound testing

.

E. Security Testing

The rise of blockchain technology has ushered in a new era

where all participants have equal roles in securing the data and

network. Despite its foundation on security and immutability,

blockchain remains vulnerable to security risks [38]. Those who

own private blockchains should be cautious about how their

existing business solutions interact with blockchain security.

Smart contracts pose an even greater challenge for regulators or

consensus bodies, as they are deeply integrated into every

transaction on the blockchain.

Testers must scrutinize both the implementation code for

security deficiencies and the distributed architecture for

potential threats that could result in denial-of-service attacks or

the exploitation of vulnerabilities. Proper modeling and

anticipation of these threats are necessary to develop effective

mitigation strategies and detailed fixes. Implementing

automated security testing provides a more reliable method for

ensuring integrity within diverse applications using ledger

systems; fuzz testing, aimed at automating vulnerability

discovery by intentionally injecting faults into the system, can

also be beneficial. Integrating security testing throughout

DevOps processes across implementation deployments will

offer comprehensive protection.

VI. CONCLUSION

 In the dynamic landscape of blockchain technology and

the widespread integration of smart contracts across various

sectors, it's imperative to evaluate the current technological

status and identify areas ripe for improvement. To this end, our

Informatics Bulletin, Helwan University, Vol 7 Issue 1, January 2025

survey on smart contract testing aims to delve into the

methodologies, practices, and tools utilized to address

challenges in smart contract development. Despite

advancements, certain issues persist, necessitating further

research to adapt traditional testing methodologies to

blockchain-based development. Moreover, enhancing

programming languages for smart contract coding and

providing guidelines for streamlined development processes are

crucial. Additionally, specialized testing tools and frameworks

are essential, regardless of the language or platform used for

smart contract development.

Successful adoption of blockchain methodologies requires a

meticulous approach to design and validation. While testing

mechanisms may mirror those of conventional systems, specific

attention must be paid to tailor test strategies in alignment with

the principles and implementation constructs of the domain.

VII. REFERENCES

[1] S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han and F. -Y. Wang,
"Blockchain-Enabled Smart Contracts: Architecture, Applications,

and Future Trends," in IEEE Transactions on Systems, Man, and

Cybernetics: Systems, vol. 49, no. 11, pp. 2266-2277, Nov. 2019.
[2] O. Ali, A. Jaradat, A. Kulakli and A. Abuhalimeh, "A Comparative

Study: Blockchain Technology Utilization Benefits, Challenges

and Functionalities," in IEEE Access, vol. 9, pp. 12730-12749,
2021.

[3] Chen, G.; He, M.; Gao, J.; Liu, C.; Yin, Y.; Li, Q. Blockchain-

Based Cyber Security and Advanced Distribution in Smart Grid. In
Proceedings of the IEEE 4th International Conference on

Electronics Technology, Chengdu, China, 7–10 May 2021.

[4] Brandstatter, T.; Schulte, S.; Cito, J.; Borkowski, M.
Characterizing Efficiency Optimizations in Solidity Smart

Contracts. In Proceedings of the IEEE International Conference on

Blockchain, Toronto, ON, Canada, 3–6 May 2020.
[5] Murugan, S.; Kris, S. A Survey on Smart Contract Platforms and

Features. In Proceedings of the 7th International Conference on

Advanced Computing and Communication Systems, Coimbatore,
India, 19–20 May 2021.

[6]] IBM News Room 2017, Available online at https://www-03.ibm.
com/press/us/en/pressrelease/51840.wss

[7] Announcing Microsofts Coco Framework for enterprise

Blockchain Networks, available online at
https://azure.microsoft.com/en-in/blog/announcing-microsoft-s-

coco-framework-for-enterprise-blockchain-networks/

[8] N. Sánchez-Gómez, L. Morales-Trujillo, J. J. Gutiérrez and J.
Torres-Valderrama, "The Importance of Testing in the Early

Stages of Smart Contract Development Life Cycle," in Journal of

Web Engineering, vol. 19, no. 2, pp. 215-242, March 2020.

[9] Graham D., Van Veenendaal E., Evans I., Black R., 2015.

Foundations of Software Testing: ISTQB Certification Cengage

Learning Emea; Revised edition.
[10] Wiegers K.E., Inspecting Requirements. StickyMinds.com Weekly

Column, 2001.

[11] Beizer B., Software Testing Techniques. Van Nostrand Reinhold
Company Limited, 1990.

[12] IEEE Approved Draft International Standard for Software and

Systems Engineering--Software Testing--Part 4: Test Techniques,
in ISO/IEC/IEEE P29119-4-FDIS April 2015 , vol., no., pp.1-147,

8 Dec. 2015.

[13] L. S. H. Colin, P. M. Mohan, J. Pan and P. L. K. Keong, “An
Integrated Smart Contract Vulnerability Detection Tool Using

Multi-Layer Perceptron on Real-Time Solidity Smart Contracts,”

IEEE Journals & Magazine | IEEE Xplore, 2024.
https://ieeexplore.ieee.org/abstract/document/10430147/

[14] S. W. Driessen, D. Di Nucci, D. A. Tamburri, and W. J. Van Den
Heuvel, “SolAR: Automated test-suite generation for solidity smart

contracts,” Science of Computer Programming, vol. 232, p.

103036, Jan. 2024, doi: 10.1016/j.scico.2023.103036.
[15] Tamer Abdelaziz and Aquinas Hobor. Smart learning to find dumb

contracts (extended version). 2023.

[16] T. Hu, B. Li, Z. Pan and C. Qian, "Detect Defects of Solidity
Smart Contract Based on the Knowledge Graph," in IEEE

Transactions on Reliability, vol. 73, no. 1, pp. 186-202, March

2024,10.1109/TR.2023.3233999
[17] Sangharatna Godboley and P. Radha Krishna. Smart Contract Test

Case Prioritization based on Frequency and Gas

Consumption.IEEE Conference Publication. 2023.
[18] Anna Vacca, Andrea Di Sorbo, Corrado A Visaggio , Gerardo

Canfora. A systematic literature review of blockchain and smart

contract development: Techniques, tools, and open challenges. In:
2021 The Journal of Systems & Software Volume 174,

https://doi.org/10.1016/j.jss.2020.110891.

[19] Chen, J., Xia, X., Lo, D., Grundy, J., Luo, X., Chen, T. Defining
smart contract defects on Ethereum. IEEE Trans. Softw. Eng,

2020.

[20] Zhang, P., Yu, J., Ji, S. ADF-GA: Data flow criterion based test
case generation for Ethereum smart contracts. In ICSEW'20:

Proceedings of the IEEE/ACM 42nd International Conference on

Software Engineering Workshops, pp 754–761, 2020.
[21] Wang, X., Wu, H., Sun, W., Zhao, Y.. Towards generating cost-

effective test-suite for Ethereum smart contract. In: 2019 IEEE
26th International Conference on Software Analysis, Evolution and

Reengineering. SANER, IEEE, pp. 549–553, 2019.

[22] Fu, Y., Ren, M., Ma, F., Jiang, Y., Shi, H., Sun, J. EVMFuzz:
Differential fuzz testing of Ethereum virtual machine. arXiv

preprint arXiv:1903.08483, 2019.

[23] Jiang, B., Liu, Y., Chan, W. Contractfuzzer: Fuzzing smart
contracts for vulnerability detection. In: Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software

Engineering, pp. 259–269, 2018.
[24] Chan, W., Jiang, B. Fuse: An architecture for smart contract fuzz

testing service. In:2018 25th Asia-Pacific Software Engineering

Conference. APSEC, IEEE, pp. 707–708, 2018.

[25] D. Khan, L. T. Jung, and M. A. Hashmani, “Systematic Literature

Review of Challenges in Blockchain Scalability,” Applied

Sciences, vol. 11, no. 20, p. 9372, Oct. 2021, doi:
10.3390/app11209372.

[26] S. Li, Q. Xu, P. Hou, et al., “Exploring the Challenges of

Developing and Operating Consortium Blockchains: A Case
Study,” ACM Int. Conf. Proceeding Ser., pp. 398–404, 2020.

[27] V. Yussupov, G. Falazi, U. Breitenbucher, ¨ et al., “On the

serverless nature of blockchains and smart contracts,” arXiv, 2020.
[28] S. Sayeed, H. Marco-Gisbert, and T. Caira, “Smart Contract:

Attacks and Protections,” IEEE Access, vol. 8, pp. 24 416–24 427,

2020.
[29] P. Sharma, R. Jindal, and M. D. Borah, “A review of smart

contract-based platforms, applications, and challenges,” Cluster

Computing, vol. 26, no. 1, pp. 395–421, Jan. 2022, doi:
10.1007/s10586-021-03491-1.

[30] S. D. Kotey et al., “Blockchain interoperability: the state of

heterogenous blockchain‐to‐blockchain communication,” IET

Communications, vol. 17, no. 8, pp. 891–914, Mar. 2023, doi:

10.1049/cmu2.12594.

[31] Satoshi Nakamoto, ”Bitcoin: A peer-to-peer electronic cash
system”,2008 , http://bitcoin.org/bitcoin.pdf

[32] V. Piantadosi, G. Rosa, D. Placella, S. Scalabrino, and R. Oliveto,

“Detecting functional and security‐related issues in smart
contracts: A systematic literature review,” Software, Practice &

Experience/Software, Practice and Experience, vol. 53, no. 2, pp.

465–495, Oct. 2022, doi: 10.1002/spe.3156.
[33] Mikael Krief, Learning DevOps: A comprehensive guide to

accelerating DevOps culture adoption with Terraform, Azure

DevOps, Kubernetes, and Jenkins , Packt Publishing, 2022.
[34] Z. Hussein, M. A. Salama, and S. A. El-Rahman, “Evolution of

blockchain consensus algorithms: a review on the latest milestones

of blockchain consensus algorithms,” Cybersecurity, vol. 6, no. 1,
Nov. 2023, doi: 10.1186/s42400-023-00163-y.

[35] Z. Rasheed and M. Mimirinis, “Integrating Blockchain Technology

into a University Graduation System,” Trends in Higher

https://www-03.ibm.co/
https://azure.microsoft.com/en-in/blog/announcing-microsoft-s-coco-framework-for-enterprise-blockchain-networks/
https://azure.microsoft.com/en-in/blog/announcing-microsoft-s-coco-framework-for-enterprise-blockchain-networks/
https://ieeexplore.ieee.org/abstract/document/10430147/

Informatics Bulletin, Helwan University, Vol 7 Issue 1, January 2025

Education, vol. 2, no. 3, pp. 514–525, Aug. 2023, doi:
10.3390/higheredu2030031.

[36] H. Chu, P. Zhang, H. Dong, Y. Xiao, S. Ji, and W. Li, “A survey

on smart contract vulnerabilities: Data sources, detection and
repair,” Information and Software Technology, vol. 159, p.

107221, Jul. 2023, doi: 10.1016/j.infsof.2023.107221.

[37] Y. Ucbas, A. Eleyan, M. Hammoudeh, and M. Alohaly,
"Performance and Scalability Analysis of Ethereum and

Hyperledger Fabric," *IEEE Access*, vol. 11, pp. 67156-67168,

2023, doi: 10.1109/ACCESS.2023.3291618.
[38] F. Jiang et al., “Enhancing Smart-Contract Security through

Machine Learning: A Survey of Approaches and Techniques,”

Electronics, vol. 12, no. 9, p. 2046, Apr. 2023, doi:
10.3390/electronics12092046.

