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Abstract—Anomaly detection, which involves identifying 

irregular patterns that diverge from normal behavior, plays a vital 

role in various fields such as cybersecurity, healthcare, financial 

systems, and the Internet of Things (IoT). Recognizing anomalies 

is key to uncovering problems like fraudulent activities, system 

failures, or security intrusions. Traditional methods for anomaly 

detection, which typically rely on statistical or threshold-based 

techniques, are effective for low-dimensional or static data but 

struggle with high-dimensional, intricate, and dynamic datasets. 

As data complexity and volume have increased, machine learning 

(ML) and deep learning (DL) techniques have become essential for 

enhancing detection precision and adaptability. Identifying 

anomalies in networks is particularly important for bolstering 

cybersecurity, acting as a proactive approach to prevent or reduce 

cyber threats. With the rapid progress in Artificial Intelligence 

(AI), many deep learning-based approaches utilizing 

Autoencoders (AEs) have been created to improve network 

security. However, the performance of these advanced AE models 

varies widely, and they often lack a thorough framework for 

assessing critical performance metrics that impact detection 

accuracy. 

 
Index Terms— Anomaly Detection, Internet of Things (IoT), 

Traditional Detection Methods, Artificial Intelligence (AI), Cyber 

Threats, Cybersecurity, Deep Learning (DL), Machine Learning 

(ML), Autoencoders (AEs). 

 

I. INTRODUCTION 

n the digital age, technologies like the Internet, smartphones, 

and robotics are now essential to everyday life. The fast-

paced growth of IT and the reliance on real-time, data-driven 

decisions have boosted global data transmission. Yet, this 

progress has also brought complex cybersecurity risks, 

challenging developers, manufacturers, users, and security 

groups. Cybersecurity organizations strive to manage the rising 

volume, speed, and variety of data for real-time threat detection. 

Increased data exchange has amplified security issues such as 

malware, DDoS attacks, phishing, and APTs, endangering 

individuals, businesses, and critical systems [1]. Anomaly 

detection is crucial for spotting deviations from normal 

patterns. It is widely used in areas like financial fraud 

prevention and traffic monitoring to identify rare, impactful 

events. Detecting such anomalies, however, poses challenges  

 
 

 

due to their infrequent occurrence and subtle nature. This 

underscores the importance of advanced detection techniques to 

effectively identify and mitigate potential threats [2]. Anomaly  

detection is vital as even a few anomalies can lead to significant 

impacts, making it crucial in areas like cybersecurity for 

spotting network intrusions and social media for identifying 

fraud, such as Sybil accounts. Consequently, network anomaly 

detection has grown in importance. However, labeling 

anomalies is often laborious and time-consuming, leading most 

methods to rely on unsupervised techniques. Popular 

approaches include autoencoder-based models and matrix 

factorization, which detect anomalies without needing large 

amounts of labeled data [3]. In IoT and sensor networks, 

anomaly detection is key for spotting sensor failures, 

environmental shifts, or intrusions. With IoT devices generating 

constant data streams, real-time detection is crucial. Deep 

learning techniques, such as CNNs and RNNs, are effective as 

they analyze both spatial and temporal patterns. Hybrid 

methods that merge ML, DL, and statistical approaches have 

shown enhanced accuracy and efficiency, particularly in real-

time edge computing scenarios [4]. ML and DL-based anomaly 

detection methods are typically divided into supervised, 

unsupervised, and semi-supervised approaches. Supervised 

techniques depend on labeled data but are hindered by the lack 

of labeled anomalies. Unsupervised methods, like clustering 

and density-based models, are more prevalent as they identify 

deviations by modeling normal behavior. Common approaches 

include k-means clustering and isolation forests, though they 

may face challenges with intricate data [5]. Deep learning 

models like autoencoders and RNNs provide significant 

progress in identifying anomalies in high-dimensional and 

sequential data. Autoencoders excel at reconstructing normal 

patterns, using reconstruction errors to flag anomalies. RNNs, 

particularly LSTMs, are adept at capturing temporal 

dependencies in time-series data, making them highly effective 

for detecting anomalies in sequences like network traffic or 

financial transactions [6]. Autoencoder (AE) models have 

become increasingly popular in deep learning for identifying 

anomalies in large-scale network traffic datasets. Their strength 

lies in efficiently learning and reconstructing data. During 

training, the AE reduces reconstruction loss, and the resulting 
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loss rate acts as a critical measure to classify network samples 

as normal or anomalous [7]. 

 While several existing surveys have examined anomaly 

detection and its applications, many focus either broadly on 

machine learning techniques or are limited to specific 

application domains. In contrast, this review provides a 

comprehensive and up-to-date synthesis of deep learning-based 

approaches, with a focus on categorizing models based on their 

architectures (e.g., autoencoders, GANs, RNNs) and 

highlighting how each performs across various data types and 

domains. Furthermore, we go beyond summarization by 

offering a critical analysis of the strengths and limitations of 

each method, as well as discussing practical challenges such as 

interpretability, scalability, and training on imbalanced 

datasets. We also introduce a refined taxonomy that groups 

models not just by architecture, but also by their training 

paradigms (supervised, unsupervised, self-supervised), which 

have been underexplored in prior reviews. Lastly, we identify 

emerging trends and future directions to guide researchers in 

addressing current gaps in the field. These contributions 

position our work as a valuable and forward-looking resource 

for both newcomers and experienced researchers in anomaly 

detection. 

 Additionally, this paper is divided into three sections: 

Section II provides background on key concepts, such as 

machine learning and deep learning. Section III presents 

reviews of recent literature and highlights key findings. Finally, 

Section IV concludes the paper. 

II. BACKGROUND 

This section illustrates the fundamental concepts, theories, 

and advancements in anomaly detection, emphasizing its 

significance in modern data analysis. 

Anomaly detection, also known as outlier detection, is 

important for finding data patterns that deviate considerably 

from predicted behavior. These anomalies may signal 

fraudulent activity, cyber-attacks, medical abnormalities, or 

equipment problems in industrial systems. Historically, 

statistical techniques and rule-based systems were used for this 

goal, but these approaches frequently fail when dealing with 

high-dimensional and complicated datasets. Recent 

improvements in machine learning (ML) and deep learning 

(DL) have improved anomaly detection models by allowing 

them to process large volumes of data, learn complex patterns, 

and spot deviations more accurately. Unlike previous methods, 

ML and DL algorithms may adapt to new abnormalities without 

requiring considerable user intervention, making them 

particularly successful in dynamic contexts [8]. 

A. Theories and Frameworks in Anomaly Detection 

A variety of theoretical models and computational 

frameworks, which can be broadly classified into statistical 

techniques, supervised learning, unsupervised learning, semi-

supervised learning, and hybrid models, form the basis of 

anomaly detection. Depending on the type of data and the 

problem domain, each of these approaches has unique benefits 

and drawbacks. 

1. Statistical Approaches 

Because classical statistical approaches can 

mathematically represent data distributions, they have 

been employed for a long time in anomaly identification.  

Normal data is assumed to follow a particular statistical 

distribution by methods like Principal Component 

Analysis (PCA), Z-score analysis, and Gaussian Mixture 

Models (GMM).  Anomalies are defined as instances 

that substantially depart from the expected distribution. 

• Gaussian Mixture Models (GMM): GMM 

assumes that data comes from a combination of 

several Gaussian distributions. GMM gives 

each case a probability by estimating the 

parameters of these distributions, designating 

as anomalies those with low likelihood. 

• Z-score Analysis: By calculating the number of 

standard deviations a point deviates from the 

mean; this method standardizes data. 

Anomalies are identified when data points 

above a predetermined threshold, such as ±3 

standard deviations. The equation of Z-score is 

shown in formula (1). 

 

Z-score Formula:  𝑍 =
X− μ

σ
             (1) 

 

Where: 

• X= data point 

• μ= mean of the dataset 

• σ= standard deviation 

 

Figure 1 illustrates the concept of detecting outliers using 

Z-scores in statistics. 

 
Fig. 1.  Detecting outliers using Z-scores in statistics. 

 

 

Figure 1 Z-score > 3 or Z-score < -3: These results show 

that the data point may be an outlier since it deviates from 

the mean by more than three standard deviations [9].  

While statistical models perform well with low-

dimensional and regularly distributed data, they struggle with 

high-dimensional datasets, multimodal distributions, and 

nonlinear patterns found in real-world applications such as 

cybersecurity and industrial monitoring [10]. 
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2. Supervised Learning Approaches 

Supervised machine learning algorithms have grown in 

favor of anomaly identification due to their predictive 

power.  Support Vector Machines (SVM), Decision 

Trees, and Random Forests are trained on labeled 

datasets that contain both normal and anomalous 

samples to develop a decision boundary that 

distinguishes the two groups. 

• Support Vector Machines (SVM): Hyperplanes 

are used by SVM to distinguish between 

examples that are normal and those that are 

aberrant. It can identify irregularities in non-

linear datasets when paired with kernel 

techniques. 

• Random Forests: To increase generality, this 

ensemble learning technique creates several 

decision trees, each trained on a distinct subset 

of data. Unusual occurrences are frequently 

classified inconsistently across trees, which 

facilitates their detection. 

Figure 2 illustrates the detection of anomalies using 

random forests. 

 
Fig. 2.  Detecting anomalies using random forests. 

 

The Isolation Trees in figure 2 demonstrate the Isolation 

Forest technique, in which anomalies (red) are separated 

in fewer splits than typical samples (blue). Gray nodes 

show intermediate steps, and green nodes show decision 

splits. Anomalies are found in sparser regions and are 

identified by shorter traversal paths, as indicated by the 

anomaly score scale on the left [11]. 

 

The primary drawback of supervised learning for 

anomaly detection is the scarcity of labeled anomaly data. 

Since anomalies are rare, acquiring sufficient labeled 

examples is challenging, and models trained on 

insufficient anomaly samples may fail to generalize well 

about unseen attacks or failures [10]. 

3. Unsupervised Learning Techniques 

Unsupervised learning techniques are now the go-to 

option for anomaly identification because labeled data is 

difficult to obtain.  By examining the data's natural 

structure, these methods identify abnormalities without 

depending on previously tagged examples. 

• Clustering-Based Methods (e.g., k-Means, 

DBSCAN): According to these approaches, 

anomalies are located far from dense clusters 

formed by typical cases.  

• k-Means Clustering: divides the data into k 

clusters, with outliers usually located far from 

the centroids. 

• DBSCAN (Density-Based Spatial Clustering 

of Applications with Noise): points in low-

density areas with few nearby data points are 

identified as anomalies. 

• Density-Based Methods (e.g., Local Outlier 

Factor - LOF): Each data point's local density 

is calculated by LOF, which then contrasts it 

with its neighbors. Examples that are 

substantially less dense than their surroundings 

are called anomalies. 

Although unsupervised learning methods are often 

successful, they can have significant false positive rates, 

particularly when the distribution of normal data is highly 

variable [9].   

 

Figure 3 illustrates clustering-based anomaly detection in 

a two-dimensional dataset. 

 
Fig. 3.  Detecting anomalies using clustering based. 

 

Clustering-based anomaly detection in a two-

dimensional dataset is depicted in figure 3. Normal data 

is represented by the blue spots, which clump together 

to form clusters. The orange points indicate anomalies, 

or outliers, that diverge from these clusters and point to 

uncommon or infrequent events. This strategy is 

frequently employed in unsupervised learning 

techniques like DBSCAN and k-Means, which identify 

anomalies by their separation from dense clusters [12]. 

4. Semi-Supervised Learning Approaches 

By combining a small quantity of labeled data with a 

larger pool of unlabeled data, semi-supervised learning 

fills the gap between supervised and unsupervised 

approaches.  Given the scarcity of labeled anomalies, 

this method is especially helpful in anomaly detection. 

• Self-Learning Techniques: Using reliable 

predictions from the unlabeled dataset, a model 

iteratively improves after being trained with 

labeled data. 

• Autoencoders with Semi-Supervised Training: 
Neural networks known as autoencoders can 
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recognize deviations when given anomalous 

inputs and learn normal behavior from labeled 

normal data. 

The quality and representativeness of the labeled subset 

determines how effective semi-supervised learning is, 

even though it outperforms fully unsupervised techniques 

in detection performance [10]. 

The Autoencoder, a neural network used for anomaly 

detection and dimensionality reduction, is depicted in 

figure 4. It is composed of an encoder that captures key 

information by compressing the input (x) into a lower-

dimensional latent space (z), also referred to as the 

bottleneck. With the goal of minimizing reconstruction 

loss (x ≈ x'), the decoder then uses this compressed 

representation to recover the input (x'). Because the 

reconstruction error is substantial when an input deviates 

greatly from taught patterns, autoencoders are useful for 

anomaly detection because they can identify data that 

cannot be reliably recreated. Autoencoders are a type of 

neural network used to learn a compressed representation 

of input data. They consist of two main parts: an encoder, 

which reduces the input data to a lower-dimensional latent 

space, and a decoder, which tries to reconstruct the original 

input from this compressed form. In anomaly detection, 

autoencoders are trained on normal data so they learn to 

reconstruct it well. When the model encounters an 

anomaly—something different from the normal patterns—

it struggles to reconstruct it accurately, resulting in a high 

reconstruction error. This error can then be used to flag 

potential anomalies [13]. 

 
Fig. 4.  Detecting anomalies using autoencoders. 

 

5. Hybrid Models for Anomaly Detection 

Hybrid approaches integrate various strategies to create 

more robust anomaly detection, hence overcoming the 

limits of individual techniques.  To improve detection 

accuracy and lower false positives, these models use 

supervised, unsupervised, and deep learning techniques. 

• Autoencoder + Isolation Forest: To further 

differentiate between normal and anomalous 

points, autoencoders effectively rebuild normal 

data, and the reconstruction mistakes they 

produce are then put into an isolation forest. 

• Deep Learning + Statistical Methods: More 

efficient anomaly identification in complicated 

datasets is made possible by combining neural 

networks with conventional statistical outlier 

detection methods. 

Unless they are effectively optimized, hybrid models are 

less appropriate for real-time applications since they 

frequently demand greater processing power and longer 

training periods [10]. 

 

Figure 5 depicts an anomaly detection framework 

combining an Autoencoder and HDBSCAN. QAR data is 

processed through a Time-Feature Attention Module, 

encoded into a latent space (L), and reconstructed by a 

Decoder. Reconstruction loss aids model training. 

HDBSCAN clusters latent representations, identifying 

normal points (blue) and outliers (orange) for anomaly 

detection [14]. 

 
Fig. 5.  Detecting anomalies using hybrid models. 

 

Overall, these theoretical foundations provide the basis for 

modern anomaly detection techniques. The selection of an 

appropriate method depends on the nature of the data, the 

availability of labeled anomalies, computational constraints, 

and domain-specific requirements. 

 

B. Historical Evolution of Anomaly Detection 

Over time, the anomaly detection field has changed. Simple 

statistical tests that assumed data fit predetermined distributions 

were the foundation of early methods. These techniques were 

useful for small-scale datasets, but they were not flexible or 

scalable. An important change occurred with the introduction 

of machine learning algorithms in the early 2000s, which made 

it possible to automatically identify patterns in big, unstructured 

datasets. Among the earliest ML-based methods were Principal 

Component Analysis (PCA) and One-Class SVM. But as data 

complexity has increased, deep learning methods like 

Autoencoders, Generative Adversarial Networks (GANs) 

where GANs are composed of two neural networks that 

compete: a generator and a discriminator. The generator creates 

synthetic data samples that try to mimic the real data, while the 

discriminator tries to distinguish between real and generated 

samples. Through this adversarial process, the generator 

becomes better at producing realistic data. In anomaly 

detection, a GAN can be trained on normal data so that it learns 

the characteristics of non-anomalous patterns. When a new data 

sample is introduced, if the generator fails to produce a similar 

version or if the discriminator identifies it as “unrealistic,” the 

sample may be considered an anomaly, and Variational 
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Autoencoders (VAEs) have become more popular because of 

their capacity to extract high-dimensional features and 

generalize to abnormalities that are not visible [15]. 

C. The Role of Autoencoders in Anomaly Detection 

Autoencoders, a specialized type of neural network, are 

designed to learn efficient representations of input data by 

compressing and reconstructing it. During training, they 

minimize the reconstruction error for normal instances. 

However, when an anomalous sample is introduced, the 

reconstruction error spikes, making it an effective anomaly 

detection tool. Variants like Sparse Autoencoders, Denoising 

Autoencoders, and Deep Autoencoding Gaussian Mixture 

Models (DAGMM) have further improved performance. These 

architectures are widely applied in cybersecurity, fraud 

detection, and medical diagnostics, where anomalies need to be 

accurately identified [16]. 

D. Variational Autoencoders (VAEs) for Anomaly Detection 

Variational Autoencoders (VAEs), a more sophisticated type 

of autoencoder, add a probabilistic latent space representation 

to the basic framework. VAEs are very good at differentiating 

between normal and anomalous patterns because they model 

the distribution of normal data rather than just learning to 

recreate inputs. Their capacity to produce realistic samples also 

improves their ability to identify irregularities in cybersecurity 

applications, financial transactions, and medical imaging [17]. 

E. Variational Autoencoders (VAEs) for Anomaly Detection 

For sequential data, Long Short-Term Memory (LSTM) 

networks, a variant of Recurrent Neural Networks (RNNs), 

have proven to be exceptionally powerful. These models 

capture long-range dependencies in time-series data, making 

them ideal for anomaly detection in financial transactions, 

predictive maintenance, and network intrusion detection. By 

learning temporal patterns, LSTMs differentiate between 

normal sequences and anomalous fluctuations, significantly 

improving detection accuracy [18]. 

F. CNNs for Anomaly Detection in Visual Data 

Because Convolutional Neural Networks (CNNs) can extract 

spatial characteristics, they are quite effective in situations 

where there are abnormalities in pictures and video data. 

CNN-based models are extensively utilized in autonomous 

car safety, medical imaging for tumor identification, and 

manufacturing flaw detection. CNNs' capacity to identify 

small abnormalities in a variety of areas is further improved 

by sophisticated methods like Transfer Learning and GAN-

based approaches [19]. 

 

G. Diffusion Models in Unsupervised Anomaly Detection 

Diffusion models have been investigated recently for 

anomaly identification, particularly in fields with little 

labeled data. By learning to produce normal data 

distributions, these models are able to identify deviations and 

identify anomalous cases. Their use in medical imaging, 

cybersecurity, and finance has shown encouraging outcomes 

and provided a fresh viewpoint on outlier detection [20]. 

H. Bias and Fairness in Anomaly Detection Models 

A critical issue in anomaly detection is bias, which can lead 

to unfair or discriminatory outcomes in applications like 

fraud detection and hiring decisions. If models are trained on 

biased datasets, they may unfairly classify certain groups as 

anomalies. Strategies like fairness-aware training, 

adversarial debiasing, and explainable AI (XAI) have been 

developed to address these ethical challenges, ensuring 

anomaly detection models remain equitable and trustworthy 

[21]. 

 

Having established the foundational concepts of anomaly 

detection and the motivation for leveraging deep learning, the 

subsequent section provides an in-depth examination of the 

key methodologies that have emerged in recent years. We 

explore how various deep learning architectures ranging 

from autoencoders and convolutional neural networks to 

recurrent models and generative frameworks have been 

employed to tackle the challenges of detecting anomalies 

across different domains. This literature review not only 

categorizes these methods based on their underlying 

architecture and application area but also critically assesses 

their performance, strengths, and limitations, offering 

insights into the current state of the field. 

Traditional anomaly detection methods such as statistical 

models, distance-based techniques, and clustering algorithms 

face several persistent challenges. These include a strong 

reliance on assumptions about data distribution (e.g., 

normality), poor performance in high-dimensional or non-

linear datasets, and limited adaptability to complex, dynamic 

data environments. Additionally, traditional models typically 

require manual feature engineering and often fail to 

generalize across different domains. They also struggle with 

imbalanced datasets, where anomalies are rare and difficult 

to learn. These limitations reduce their effectiveness in 

modern real-world applications, thus motivating the shift 

toward deep learning approaches, which can automatically 

learn complex patterns, handle unstructured data, and scale 

to high-dimensional problems more effectively. 

[9],[10],[11]. 

Compared to traditional anomaly detection techniques—

such as statistical models, clustering algorithms, and 

distance-based approaches—deep learning models offer 

several substantial improvements. Traditional methods often 

rely on manual feature engineering and strong assumptions 

about data distribution, which limit their flexibility and 

effectiveness in complex, high-dimensional, or unstructured 

datasets. In contrast, deep learning models, such as 

autoencoders, CNNs, and RNNs, automatically learn 

relevant features from raw data, allowing for more accurate 

and robust detection of subtle or non-linear anomalies. Deep 

learning is also more adaptable to diverse data types, 

including time-series, images, text, and graphs, where 

traditional models often struggle. Additionally, deep models 

can scale better with large datasets and leverage transfer 

learning or self-supervised learning to improve performance 

in low-label settings. These capabilities make deep learning 

a powerful and increasingly essential approach to modern 

anomaly detection.[16],[17],[18],[19]. 
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III. LITERATURE REVIEW 

In recent years, a diverse array of deep learning techniques 

has been proposed to enhance the effectiveness of anomaly 

detection. This section reviews key contributions in the 

literature, organizing them based on the type of neural network 

architecture employed and the specific application domains 

addressed. 

 

Guo et al. [22] proposed an energy-efficient anomaly 

detection method for IoT multivariate time series data using a 

Graph Neural Network (EGNN). They evaluated their model on 

four real-world datasets—SWaT, PSM, MSL, and SMAP 

spanning water treatment, server monitoring, and astronautical 

systems. EGNN employs graph attention-based forecasting and 

deviation scoring to identify anomalies while minimizing 

energy consumption. The experimental results demonstrated 

that EGNN reduces energy usage significantly compared to 

baseline methods, though it sometimes exhibits slightly lower 

F1-scores compared to state-of-the-art approaches like 

OmniAnomaly and GDN. However, its limitations include 

dependency on accurate graph structure learning, restricted 

evaluation across diverse IoT domains, and scalability 

challenges in large-scale deployments. 

 Contreras-Cruz et al. [23] introduced a Generative 

Adversarial Network (GAN)-based approach for anomaly 

detection in aerial images, utilizing the fast Anomaly 

Generative Adversarial Network (f-AnoGAN). The study 

employed two datasets which are urban and rural space image 

sets, where anomalies were human-made structures such as 

buildings and roads. The f-AnoGAN model outperformed other 

methods, achieving AUC scores of 0.99 and 0.92 for urban and 

rural datasets, respectively. However, the approach faces 

challenges in handling lower contrast anomalies, dependency 

on high-quality normal data, and computational cost during 

training. 

 

Iqbal and Amin [24] explored deep learning-based 

approaches for time series forecasting and anomaly detection, 

focusing on credit card fraud detection. They utilized 

benchmark datasets, including the Numenta Anomaly 

Benchmark (NAB) corpus and a credit card fraud detection 

dataset, to evaluate various models such as LSTM, 

Autoencoder, GAN, Transformer, and ensemble methods. The 

results showed that the LSTM-Autoencoder, GAN, and 

ensemble models performed best, achieving high accuracy and 

AUC-ROC scores. However, limitations include the sensitivity 

to data imbalance, computational complexity, and the need for 

extensive hyperparameter tuning. 

 

Khan and Haroon [25] proposed an unsupervised deep 

learning ensemble model for anomaly detection in static 

attributed social networks. They evaluated their approach on the 

BlogCatalog and Flickr datasets, which contain network 

structures and node attributes relevant to social media 

interactions. The ensemble model integrates Autoencoders 

(AEs), Variational Autoencoders (VAEs), and Generative 

Adversarial Networks (GANs), leveraging a novel weighted 

averaging mechanism to improve anomaly detection. 

Experimental results showed that their ensemble model 

outperformed individual baseline methods such as 

DOMINANT, VGAE, and EfficientGAN, achieving the 

highest AUC scores (0.8503 for BlogCatalog and 0.8418 for 

Flickr). However, limitations include the need for further 

evaluation of low-dimensional datasets and challenges in 

extending the model to dynamic network environments. 

 

Adiban et al. [26] introduced STEP-GAN, a novel multi-

generator Generative Adversarial Network (GAN) approach for 

anomaly detection, specifically targeting cybersecurity threats. 

The model was evaluated on the ICS (Industrial Control 

System) and UNSW-NB15 datasets, both highly imbalanced, 

containing significantly more normal samples than anomalies. 

STEP-GAN leverages multiple generators in a stepwise 

interaction with a discriminator to capture different data 

distribution modes, effectively mitigating the mode collapse 

issue common in GAN-based methods. Experimental results 

demonstrated that STEP-GAN outperformed state-of-the-art 

approaches in terms of accuracy and F-measure across both 

datasets. However, the method's limitations include potential 

sensitivity to shifts in the normal data distribution over time and 

challenges in defining optimal hyperparameters for different 

domains. 

 

Li et al. [27] proposed a Controlled Graph Neural Network 

(ConGNN) with a denoising diffusion probabilistic model 

(DDPM) for anomaly detection in attributed networks. They 

evaluated their approach on five benchmark datasets, Cora, 

Citeseer, PubMed, Photo, and Computer, demonstrating its 

effectiveness in handling label scarcity. ConGNN generates 

augmented data by injecting reference node characteristics into 

source nodes, enhancing network anomaly detection. The 

model outperformed state-of-the-art baselines in AUC and 

precision metrics. However, limitations include sensitivity to 

the choice of reference nodes, computational overhead from the 

diffusion model, and challenges in extending the method to 

dynamic graphs. 

 

Kopčan et al. [28] developed an anomaly detection 

framework using Adversarial Autoencoders (AAE) and Deep 

Convolutional Generative Adversarial Networks (DCGAN) for 

autonomous transportation systems. Their approach was tested 

on the MNIST, Fashion-MNIST, and CIFAR-10 image datasets 

to evaluate the models' ability to detect anomalies in visual data. 

The study introduced an optimal decision threshold using 

cumulative and reverse cumulative distribution functions, 

leading to anomaly detection errors of 0.08% for AAE and 

1.89% for DCGAN on the MNIST dataset. However, the 

method's effectiveness decreases when applied to more 

complex datasets like CIFAR-10, limiting its generalizability to 

real-world autonomous transport scenarios. 

 

Sevyeri and Fevens [29] introduced AD-CGAN, a 

Contrastive Generative Adversarial Network for anomaly 

detection, designed to address mode collapse and instability 
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issues in GAN-based models. They evaluated AD-CGAN on 

four benchmark datasets—CIFAR-10, FashionMNIST, 

MNIST, and CatsVsDogs using both one-vs-all and all-vs-one 

anomaly detection schemes. The model integrates contrastive 

learning with GANs and autoencoders, enhancing feature 

discrimination and reconstruction accuracy. Experimental 

results demonstrated that AD-CGAN outperformed state-of-

the-art anomaly detection methods, achieving significant 

improvements in ROC-AUC scores. However, the approach 

faces challenges when handling multi-modal normal 

distributions, leading to reduced performance in complex 

datasets 

 

Yu et al. proposed [30] a graph-based anomaly detection 

framework utilizing an attention mechanism to enhance feature 

extraction and anomaly classification. Their approach was 

evaluated on multiple datasets, including WebKB, Cora, 

Citeseer, and a power grid dataset, where anomalies were 

artificially injected for benchmarking. The method integrates 

deep neural networks with graph representation learning, 

incorporating a graph attention module and an optimal 

transport-based classifier to improve anomaly detection 

performance. Experimental results demonstrated superior recall 

rates compared to baseline methods, particularly in structured 

data domains. However, limitations include increased memory 

consumption and reduced efficiency on large-scale graphs. 

 

Yang et al. [31] introduced AnoTrans, a Transformer-based 

Generative Adversarial Network (GAN) designed to enhance 

anomaly detection by capturing both long-range dependencies 

and local details in image data. They evaluated their model on 

four benchmark datasets: CIFAR10, STL10, LBOT, and 

MVTecAD demonstrating superior performance over state-of-

the-art CNN-based methods. AnoTrans employs a U-Net-

inspired generator with self-attention mechanisms and a novel 

skip attention connection (SAC) to improve feature 

representation. Experimental results showed that AnoTrans 

outperformed SAGAN by over 3% in AUC scores, particularly 

excelling in detecting subtle anomalies. However, the method's 

limitations include increased computational complexity and 

potential instability in GAN training. 

 

Ning et al. proposed [32] MST-GNN, a Multi-Scale 

Temporal-Enhanced Graph Neural Network for anomaly 

detection in multivariate time series. The model was evaluated 

on three real-world datasets: MSL, SWaT, and WADI capturing 

anomalies in industrial and sensor-based environments. MST-

GNN integrates shapelets learning, a recurrent-skip neural 

network, and raw time series data to enhance temporal feature 

representation, while a graph attention network captures 

dependencies among multivariate time series. Experimental 

results demonstrated superior F1-scores, and recall compared to 

baseline methods, particularly excelling in detecting subtle 

anomalies. However, limitations include computational 

complexity and sensitivity to hyperparameter tuning. 

 

Hassan et al. [33] proposed a real-time anomaly detection 

framework for network traffic using Graph Neural Networks 

(GNNs) and Random Forest models. Their study utilized the 

Hornet dataset, which consists of network traffic data collected 

from honeypots deployed in eight global locations. The 

approach leverages GNNs for graph-based anomaly detection 

and Random Forest for feature-based classification, comparing 

their effectiveness. Experimental results showed that the 

Random Forest model outperformed GNNs, achieving near-

perfect accuracy of 99%, while GNNs struggled with dynamic 

graphs and class imbalance. However, GNNs exhibited 

potential for capturing structural anomalies. Limitations 

include the need for further optimization of GNN-based 

approaches and scalability challenges. 

 

Ounasser et al. [34] conducted a comparative study on 

unsupervised anomaly detection using generative models and 

autoencoders, evaluating various deep learning approaches 

across seven datasets, including KDDCup99, Credit Cards, and 

WDBC. The study focused on DAGMM, SO-GAAL, and MO-

GAAL models, demonstrating their superiority over traditional 

machine learning methods such as Isolation Forest and LOF. 

DAGMM achieved up to a 14% improvement in F1-score, 

particularly excelling in high-dimensional and contaminated 

datasets. However, the models face challenges in mode collapse 

(for GANs), sensitivity to contamination rates, and 

computational resource requirements. 

 

Sharma et al. [35] introduced Inspection-L, a Graph Neural 

Network (GNN)-based anomaly detection framework for 

fraudulent transaction identification in blockchain networks. 

They evaluated their model using the Elliptic dataset, a large-

scale Bitcoin transaction dataset, leveraging self-supervised 

Deep Graph Infomax (DGI) and a Graph Isomorphism Network 

(GIN), combined with a supervised Random Forest classifier. 

Experimental results demonstrated that Inspection-L 

outperformed traditional machine learning models in detecting 

illicit transactions, achieving superior recall and F1-scores. 

However, the method faces limitations in scalability, 

computational cost, and potential sensitivity to evolving 

blockchain fraud tactics. 

 

Chen et al. [36] proposed a Dual Auto-Encoder GAN-based 

anomaly detection model (DAGAN) for industrial control 

systems (ICS), addressing challenges such as the long-tailed 

distribution of data and the difficulty of obtaining abnormal 

samples. The DAGAN model employs an "encoder-decoder-

encoder" architecture to learn the latent and marginal 

distributions of normal data without requiring any abnormal 

samples for training. A parameter-free dynamic strategy was 

introduced to robustly learn the marginal distribution, reducing 

the misjudgment of marginal samples. The model was 

evaluated on the DS2OS and SWaT datasets, achieving high 

accuracy and outperforming other state-of-the-art methods, 

including GANomaly and FenceGAN. The DAGAN model 

demonstrated superior performance in terms of accuracy, recall, 

and F1-score, particularly for hard-to-identify attacks. 

However, the model's performance could be further improved 
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for multi-class anomaly detection, which was identified as a 

future research direction. 

 

 Xu et al. [37] introduced TGAN-AD, a Transformer-based 

Generative Adversarial Network (GAN) model for anomaly 

detection in time series data. The model was evaluated using 

three public datasets: SWaT, WADI, and KDDCUP99. TGAN-

AD employs a Transformer-based generator to capture 

contextual patterns in time series data and a discriminator to 

assist in detecting anomalies. Experimental results 

demonstrated that TGAN-AD outperformed state-of-the-art 

anomaly detection methods, achieving the highest Recall and 

F1-Score across all datasets. However, the study highlighted the 

model's sensitivity to hyperparameter tuning, particularly the 

sliding window size and Transformer layers, which could 

impact detection performance. 

 

Lian et al. [38] introduced a digital twin-driven anomaly 

detection method for oil and gas stations using MTAD-GAN, 

combining knowledge graph attention and temporal Hawkes 

attention to enhance spatio-temporal correlations. Tested on 

datasets like KDD99, SWaT, and WADI, the method achieved 

significant improvements in accuracy, precision, F1 score, and 

AUC-ROC, outperforming traditional and deep learning 

approaches. However, challenges remain in handling 

imbalanced data and exploring complex time series 

relationships for broader industrial applications. 

 

Daniel et al. [39] proposed AnomEn, a robust graph neural 

network encoder for anomaly detection in attributed networks. 

The model was tested on multiple datasets, including Twitter, 

Enron, and Amazon, for node anomaly detection, and PolitiFact 

and GossipCop for edge anomaly detection. AnomEn 

introduces a weighted aggregation mechanism that balances 

node features and neighborhood influences, addressing 

challenges of false positives and false negatives in Graph 

Neural Networks (GNNs). Experimental results showed that 

AnomEn outperformed existing methods, improving node 

anomaly detection by 5.63% and edge anomaly detection by 

7.87%. However, the study noted that parameter tuning, 

particularly the weighting factor in aggregation, impacts 

performance. 

 

Emane et al. [40] proposed an anomaly detection framework 

that integrates Graph Convolutional Networks (GCNs) with 

Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) for large-scale graph data. The model was tested on 

datasets such as YelpChi, Amazon, and ACM, where it 

demonstrated improved accuracy and robustness in identifying 

anomalous nodes. GCNs were used to generate expressive node 

embeddings, which were then clustered using DBSCAN, 

leveraging a novel heuristic for automatic hyperparameter 

tuning. The results showed that this approach outperformed 

traditional methods like K-means and OPTICS, as well as state-

of-the-art models like RioGNN and CARE-GNN. However, the 

study noted that the model's performance is influenced by 

hyperparameter selection, particularly the number of GCN 

layers and DBSCAN’s minimum points threshold. 

 

Nakao et al. [41] proposed an unsupervised deep anomaly 

detection method for chest radiographs using a Variational 

Autoencoder-Generative Adversarial Network (VAE-GAN). 

The model was trained on 29,684 frontal chest radiographs 

from the Radiological Society of North America (RSNA) 

Pneumonia Detection Challenge dataset, using only normal 

images for training. The VAE component captured normal 

image distributions, while the GAN improved reconstruction 

quality. The model achieved an AUROC of 0.752 for detecting 

abnormal images, with higher performance for the "Opacity" 

class (0.838) compared to "No Opacity/Not Normal" (0.704). 

Although the method successfully detected various 

abnormalities, including lung masses and pleural effusion, its 

performance was limited by the inherent challenges of 

unsupervised learning, such as difficulty in precisely 

diagnosing specific conditions. 

 

Xu et al. [42] introduced a two-stage anomaly detection 

model based on Generative Adversarial Networks (GANs) to 

enhance detection accuracy, particularly for small and positive 

samples. The approach was tested on the liver CT image dataset 

and the CIFAR10 public dataset. The first stage extracts multi-

scale image features using convolutional neural networks, 

while the second stage employs an anomaly detection GAN 

with an Attention Gate mechanism to improve reconstruction 

quality. The proposed model achieved superior results, with an 

8.8% improvement on the liver CT dataset and a 19.2% increase 

on CIFAR10 compared to the skip-GANomaly baseline. 

However, the study noted that the method's effectiveness 

depends on feature extraction quality, and further 

improvements in handling complex abnormalities are needed. 

 

Ko et al. [43] proposed an anomaly detection method using 

Graph Neural Networks (GNNs) to analyze feature correlations 

in network data, focusing on real-time detection of Distributed 

Denial-of-Service (DDoS) attacks. The study utilized the 

Coburg Intrusion Detection Dataset (CIDDS) and KDDCup 

datasets, applying GNNs to trace feature interrelationships and 

identify anomaly signals. The method achieved high accuracy 

rates of 94.5% for KDDCup and 98.85% for CIDDS, 

demonstrating its effectiveness in detecting network anomalies. 

However, the study acknowledged limitations in handling real-

time detection for highly dynamic network environments and 

the need for further optimization of feature selection to improve 

computational efficiency. The authors highlighted the potential 

of GNNs in enhancing real-time anomaly detection but 

emphasized the challenges in scaling the approach for broader 

network applications. 

 

Luo et al. [44] proposed an anomaly detection model that 

combines Generative Adversarial Networks (GANs) with 

Convolutional Autoencoders (CAEs) to enhance feature 

extraction for time-series data. The model was evaluated on 

ECG and 2D gesture datasets, leveraging a modified version of 

the Unsupervised Anomaly Detection (USAD) architecture to 
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improve stability during adversarial training. Additionally, the 

study introduced an Exponential Weighted Moving Average 

(EWMA) method to smooth reconstruction errors and reduce 

false positives. Experimental results showed an improvement 

of 0.028% in AUROC, 0.233% in AUPRC, and 0.187% in F1-

score compared to existing methods. However, the model 

requires manual threshold tuning for optimal detection, limiting 

its adaptability to real-time applications. 

 

Park et al. [45] proposed an unsupervised anomaly detection 

method for breast cancer screening using StyleGAN2 to 

generate synthetic mammograms from 105,948 normal images. 

Evaluated on 50 cancer and 50 normal mammograms, the 

method achieved an AUC of 70.0%, sensitivity of 78.0%, and 

specificity of 52.0%. While the synthetic images showed high 

fidelity (FID score: 4.383), limitations included noise-like 

artifacts, reliance on craniocaudal views, and insufficient 

performance for clinical use. Future improvements, such as 

higher-resolution images and additional views, were suggested 

to enhance accuracy. 

 

Benaddi et al. [46] proposed a hybrid anomaly detection 

model combining Distributional Reinforcement Learning 

(DRL) and Generative Adversarial Networks (GANs) to 

enhance cybersecurity in Industrial Internet of Things (IIoT) 

networks. The model was evaluated using the DS2OS dataset, 

which contains various IIoT attack types such as Denial of 

Service, malicious control, and data probing. The GAN 

component was used for data augmentation to address class 

imbalance, while DRL improved detection by modeling the 

probability distribution of anomalous events. Experimental 

results demonstrated that the DRL-GAN model outperformed 

standard DRL in both binary and multi-class classification, 

achieving higher accuracy, precision, recall, and F1-score. 

However, the study noted that the approach requires high 

computational resources and manual fine-tuning of GAN 

training for optimal results. 

 

Duan et al. [47] proposed a log anomaly detection method, 

GAN-EDC, based on Generative Adversarial Networks 

(GANs), utilizing an Encoder-Decoder framework with Long 

Short-Term Memory (LSTM) as the generator and 

Convolutional Neural Networks (CNN) as the discriminator. 

The method was evaluated on real-world log datasets, including 

HDFS and BGL, achieving an average precision of 95% for 

detecting log point anomalies. The generator maps log 

keywords to templates, while the discriminator distinguishes 

between real and generated templates, with anomaly detection 

performed using Euclidean distance. GAN-EDC outperformed 

traditional methods like clustering, SVM, and decision trees in 

accuracy and efficiency. However, the study acknowledged 

limitations in handling large-scale datasets and the need for 

manual parameter tuning, particularly for the threshold kk. 

Future work suggested incorporating reinforcement learning for 

automated parameter optimization. 

Deep learning (DL) has emerged as a powerful tool for 

anomaly detection across various domains, offering enhanced 

capabilities over traditional methods. In the realm of 

cybersecurity, DL models such as Long Short-Term Memory 

(LSTM) networks and hybrid architecture have demonstrated 

high accuracy in detecting network intrusions and malicious 

activities within Internet of Things (IoT) environments. For 

instance, a study achieved a detection accuracy of up to 99.9% 

using LSTM-based models for IoT security applications [48]. 

In healthcare, DL techniques have been instrumental in early 

disease detection and monitoring. A notable study applied DL-

based models to breast ultrasonography, achieving significant 

improvements in anomaly detection accuracy. Similarly, in 

intensive care units, DL models have been utilized for 

automated anomaly detection in EEG signals, enhancing patient 

monitoring and care [49]. 

The industrial IoT sector has also benefited from DL-based 

anomaly detection. A real-time deep anomaly detection 

framework combining Convolutional Neural Networks (CNNs) 

and LSTM networks was developed to monitor multivariate 

time-series data, effectively identifying anomalies in industrial 

processes. Additionally, a memory-efficient DL model named 

TinyAD was proposed to facilitate anomaly detection on 

resource-constrained IIoT devices, demonstrating reduced 

memory consumption with negligible computational overhead 

[50]. 

In the financial domain, DL models have revolutionized 

anomaly detection by enabling real-time fraud detection and 

risk management. These models analyze transaction data to 

identify fraudulent activities and assess financial statements for 

inconsistencies, thereby aiding in the prevention of financial 

crimes [51]. 

 

This review goes beyond summarizing prior work by 

critically examining the strengths, limitations, and assumptions 

of existing deep learning-based anomaly detection models. 

Through this analysis, we identify specific gaps in literature 

such as the lack of interpretability, insufficient real-time 

evaluation, and limited generalizability across domains that 

remain underexplored. These gaps highlight the need for more 

robust, explainable, and adaptable approaches. The 

organization of this review, including our taxonomy and 

comparative analysis, is designed to underscore these research 

deficiencies and provide a foundation for future studies aimed 

at addressing them. 

 

Table 1 presents a comprehensive comparison of the papers 

mentioned in the literature review section. The comparison 

made based on many aspects such as dataset, techniques, 

finding and limitations. 
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TABLE I 

COMPREHENSIVE ANALYSIS OF LITERATURE REVIEW PAPERS 

Paper Dataset Techniques 
Results Limitations 

(Guo et al.) 
[22] 

SWaT, PSM, MSL, 
SMAP 

Graph Neural Network (EGNN) Energy-efficient anomaly 
detection with reduced power 

consumption 

Dependency on graph structure 
accuracy, scalability issues 

 

(Contreras-
Cruz et al.) 

[23] 

Urban & rural aerial 
image datasets 

 

 

f-AnoGAN (fast AnoGAN) AUC 0.99 (urban), 0.92 (rural) 
 

 

Struggles with low-contrast 
anomalies, high training cost 

 

(Iqbal & Amin) 

[24] 

NAB, credit card 

fraud dataset 

 
 

LSTM, Autoencoder, GAN, 

Transformer, ensemble methods 

LSTM-AE, GAN, and ensemble 

models achieved high accuracy 

GAN results are accuracy 1.000, 
precision 1.000, recall 1.000, F1 

1.000 and R2 Score 0.978 

Sensitivity to class imbalance, 

hyperparameter tuning complexity 

(Khan & 

Haroon) 

[25] 

BlogCatalog, Flickr  

 

Ensemble (AE, VAE, GAN) AUC 0.8503 (BlogCatalog), 

0.8418 (Flickr) 

Limited evaluation on low-

dimensional data, not tested on 

dynamic networks 

 

(Adiban et al.) 

[26] 

ICS, UNSW-NB15 

 

STEP-GAN (multi-generator 

GAN) 

Higher accuracy & F-measure 

than baselines. Metrics on 
UNSW-NB15 Dataset Accuracy 

97.24 and F1 0.9644 

Sensitive to data shifts, complex 

hyperparameter tuning 
 

(Li et al.) 
[27] 

Cora, Citeseer, 
PubMed, Photo, 

Computer 

 

ConGNN + DDPM Higher AUC, precision in label-
scarce settings. Metrics on 

computer, photo and cora 

datasets are AUC 0.983, 0.85 
and 0.881 respectively. 

Sensitivity to reference node choice, 
high computational cost 

(Kopčan et al.) 

[28] 

MNIST, Fashion-

MNIST, CIFAR-10 
 

Adversarial Autoencoder (AAE), 

DCGAN 

Anomaly detection error 0.08% 

(AAE) and 1.89% (DCGAN). 

Decreased performance on complex 

datasets like CIFAR-10 

(Sevyeri & 

Fevens) 
[29] 

CIFAR-10, 

FashionMNIST, 
MNIST, CatsVsDogs 

 

AD-CGAN (Contrastive GAN) Higher ROC-AUC than 

baselines. For CIFAR-10 dataset 
and MNIST AUC 89.8 and 94.6 

respectively. 

Struggles with multi-modal 

distributions 

(Yu et al.) 
[30] 

WebKB, Cora, 
Citeseer, power grid 

dataset 

 

Graph-based attention mechanism Higher recall than baselines. 
Recall@L = 20 on core dataset is 

0.79 

High memory usage, inefficiency in 
large-scale graphs 

(Yang et al.) 

[31] 

CIFAR-10, STL10, 

LBOT, MVTecAD 

 

AnoTrans (Transformer-GAN) 3% higher AUC than SAGAN High computational complexity, 

unstable GAN training 

(Ning et al.) 

[32] 

MSL, SWaT, WADI 

 

MST-GNN (Multi-Scale 

Temporal GNN) 

Best F1-score, recall on 

benchmark datasets 

Computationally expensive, 

sensitive to hyperparameters 

(Hassan et al.) 
[33] 

Hornet (honeypot 
network traffic) 

 

GNN + Random Forest RF: 99% accuracy, GNN 
struggled with imbalance 

GNN scalability issues, optimization 
needed 

(Ounasser et 
al.) 

[34] 

 

KDDCup99, Credit 
Cards, WDBC 

 

DAGMM, SO-GAAL, MO-
GAAL 

DAGMM improved F1-score by 
14% 

Mode collapse in GANs, sensitivity 
to contamination rates 

(Sharma et al.) 

[35] 

 

Elliptic (Bitcoin 

transactions) 

 

GNN (DGI, GIN) + RF Higher recall & F1-score than 

ML models. Inspection-L 

AF+DNE precision 0.972. recall 
0.72 and F1 0.8282 

Scalability issues, sensitive to 

evolving fraud patterns 

Chen et al. 

[36] 
 

DS2OS, SWaT Dual Auto-Encoder GAN 

(DAGAN) 

Improved anomaly detection 

accuracy over five baseline 
models. the average values of the 

ACC, Rec and F1 are greater 

than 0.82 on SWaT dataset. 

Effectiveness depends on accurate 

discriminator-based marginal sample 
selection 

(Xu et al.) 

[37] 

SWaT, WADI, 

KDDCUP99 

TGAN-AD (Transformer-based 

GAN) 

Highest Recall and F1-Score 

across all datasets. One SWaT 

data set F1 0.953, recall 0.99 and 
precision 91.8. 

Sensitive to hyperparameter tuning 

(sliding window size, Transformer 

layers) 

Paper 20 (Lian 
et al.) 

[38] 

KDD99, SWaT, 
WADI, J10031, 

SKAB, DAMADICS, 

MSL, SMAP, SMD 
 

MTAD-GAN (GAN + Digital 
Twin + Knowledge Graph + 

Temporal Hawkes Attention) 

Accuracy improved by 2.6% 
over TenED algorithm, best 

precision, F1-score, AUC-ROC 

Struggles with highly imbalanced 
data, needs further exploration of 

implicit time-series relationships 
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Paper Dataset Techniques 
Results Limitations 

(Daniel et al.) 
[39] 

Twitter, Enron, 
Amazon (node 

anomaly detection); 

PolitiFact, 
GossipCop (edge 

anomaly detection) 

 

AnomEn (GNN-based encoder 
with weighted aggregation) 

Improved node anomaly 
detection by 5.63%, and edge 

anomaly detection by 7.87%. For 

the Gossipcop dataset achieved 
the highest accuracy score of 

0.9798 and AUC score of 

0.9796. 

Performance affected by parameter 
tuning, particularly weighting factor 

in aggregation 

(Emane et al.) 

[40] 

YelpChi, Amazon, 

ACM 

GCN + DBSCAN (Graph 

Convolutional Networks + 

Clustering) 

Outperformed K-means, 

OPTICS, RioGNN, and CARE-

GNN in node anomaly detection. 
F1 on Amazon, Yelp and ACM 

datasets are 0.95,0.92 and 0.98 

respectively. 
 

Sensitive to hyperparameter 

selection (GCN layers, DBSCAN 

min points threshold) 
 

(Nakao et al.) 

[41] 

RSNA Pneumonia 

Detection Challenge 
(chest radiographs) 

VAE-GAN (Variational 

Autoencoder + Generative 
Adversarial Network) 

AUROC 0.752 (overall), 0.838 

(Opacity class), 0.704 (No 
Opacity/Not Normal) 

Limited by unsupervised learning, 

struggles with precise diagnosis of 
specific conditions 

 
     

(Ko et al.) 

[43] 

CIDDS, KDDCup GNN-based anomaly detection for 

network traffic 

94.5% accuracy (KDDCup), 

98.85% accuracy (CIDDS) 

Limited real-time performance in 

dynamic networks, needs 
optimization for feature selection 

 

(Luo et al.) 
[44] 

ECG, 2D gesture 
datasets 

 

GAN + Convolutional 
Autoencoder (USAD-based) + 

EWMA 
 

AUROC +0.028%, AUPRC 
+0.233%, F1-score +0.187% vs. 

baseline 

Requires manual threshold tuning, 
limiting adaptability to real-time 

applications 

(Park et al.) 

[45] 

Mammography 

dataset (105,948 

normal, 100 test 
cases) 

 

StyleGAN2 (synthetic image 

generation for anomaly detection) 

AUC 70.0%, Sensitivity 78.0%, 

Specificity 52.0%, FID 4.383 

Limited to craniocaudal views, 

synthetic artifacts, insufficient 

clinical accuracy 

(Benaddi et al.) 
[46] 

DS2OS (IIoT 
cybersecurity dataset) 

DRL-GAN (Distributional 
Reinforcement Learning + GAN) 

Improved accuracy, precision, 
recall, F1-score over standard 

DRL. On normal DRL f1 score 

99.22, precision 99.5 and 
accuracy 98.955 

 

High computational cost, manual 
fine-tuning required for GAN 

training 

(Duan et al.) 
[47] 

HDFS, BGL (log 
datasets) 

 

GAN-EDC (GAN + LSTM 
encoder-decoder + CNN 

discriminator) 

 

In BGL dataset 
with Precision 96%, recall 89% 

and F-measure 92%. 

Struggles with large-scale logs, 
manual parameter tuning needed 

     

Despite the promising performance of deep learning 

techniques in anomaly detection, several limitations hinder 

their widespread applicability and generalization. One major 

challenge is the sensitivity to hyperparameter tuning. Many 

models, such as autoencoders and GANs, require careful 

calibration of parameters like learning rates, architecture depth, 

and threshold settings for anomaly scores, which can 

significantly impact performance. This makes replication and 

real-world deployment more difficult. 

Another critical limitation is computational complexity. 

Deep learning models often involve high training and inference 

costs, making them less suitable for real-time or resource-

constrained environments such as IoT devices or edge 

computing platforms. Furthermore, training deep models on 

high-dimensional data may require substantial GPU resources 

and time, which can limit accessibility for researchers or 

organizations with fewer computational resources. 

Imbalanced data remains a persistent issue in anomaly 

detection, where anomalies are inherently rare. While 

techniques like oversampling or synthetic anomaly generation 

can help, they may also introduce noise or fail to represent 

realistic deviations. This imbalance can lead to biased models 

that overfit the majority class. 

Moreover, lack of interpretability is a significant concern, 

particularly in safety-critical applications. Most deep learning 

models act as black boxes, offering little insight into the 

rationale behind anomaly predictions. This undermines trust 

and makes debugging or refining models difficult. 

Finally, many existing approaches lack generalization across 

domains. A model trained in one type of data (e.g., network 

traffic) often fails when applied to another (e.g., medical 

records), highlighting the need for domain adaptation and 

transfer learning strategies. 

Future research should focus on developing explainable and 

interpretable models to enhance trust, especially in critical areas 

like healthcare and finance. Approaches like self-supervised 

and few-shot learning can address the challenge of limited 

labeled anomaly data. Improving cross-domain generalization 

through transfer learning is also vital, as is creating lightweight 

models for real-time, edge-device deployment. Standardizing 
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benchmarks and evaluation metrics will help ensure fair 

comparisons. Additionally, future systems should provide 

actionable explanations alongside anomaly detection. Finally, 

ethical considerations such as privacy, fairness, and the impact 

of false detections must be addressed to ensure responsible use. 

IV. CONCLUSION 

In this review, we have provided a comprehensive overview 

of deep learning techniques applied to anomaly detection across 

various domains. We discussed the strengths and limitations of 

popular architectures such as autoencoders, generative 

adversarial networks (GANs), recurrent neural networks 

(RNNs), and convolutional neural networks (CNNs), while also 

highlighting benchmark datasets and evaluation metrics 

commonly used in the literature. 

Looking forward, several promising research directions are 

emerging in this space. One key area is the development of 

explainable and interpretable deep learning models, which are 

crucial for real-world deployment, especially in sensitive 

domains like healthcare and finance. Another growing trend is 

the integration of multimodal data (e.g., combining images, 

text, and sensor data) to enhance anomaly detection 

performance in complex environments. 

In addition, there is increasing interest in self-supervised and 

few-shot learning approaches, which aim to reduce the 

dependency on large, labeled datasets, an ongoing challenge in 

anomaly detection. The use of foundation models and pre-

trained architectures tailored for anomaly detection is also 

gaining traction. 

Moreover, the rise of edge computing calls for lightweight 

and efficient deep learning models capable of performing real-

time anomaly detection with limited computational resources. 

Future research could explore model compression techniques 

and hardware-aware designs to address these constraints. 

Lastly, collaborative and federated learning frameworks 

offer potential for privacy-preserving anomaly detection across 

distributed systems without the need to centralize data, a critical 

aspect for domains such as cybersecurity and medical 

diagnostics. 
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